Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 255, Pages 41–54 (Mi tm252)  

This article is cited in 16 scientific papers (total in 16 papers)

Local Convergence in Measure on Semifinite von Neumann Algebras

A. M. Bikchentaev

N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University
References:
Abstract: Suppose that $\mathcal M$ is a von Neumann algebra of operators on a Hilbert space $\mathcal H$ and $\tau $ is a faithful normal semifinite trace on $\mathcal M$. The set $\widetilde {\mathcal M}$ of all $\tau $-measurable operators with the topology $t_{\tau }$ of convergence in measure is a topological $*$-algebra. The topologies of $\tau $-local and weakly $\tau $-local convergence in measure are obtained by localizing $t_{\tau }$ and are denoted by $t_{\tau \mathrm l}$ and $t_{\mathrm w\tau \mathrm l}$, respectively. The set $\widetilde {\mathcal M}$ with any of these topologies is a topological vector space. The continuity of certain operations and the closedness of certain classes of operators in $\widetilde {\mathcal M}$ with respect to the topologies $t_{\tau \mathrm l}$ and $t_{\mathrm w\tau \mathrm l}$ are proved. S.M. Nikol'skii's theorem (1943) is extended from the algebra $\mathcal B(\mathcal H)$ to semifinite von Neumann algebras. The following theorem is proved: {\itshape For a von Neumann algebra $\mathcal M$ with a faithful normal semifinite trace $\tau $, the following conditions are equivalent\textup : \textup {(i)} the algebra $\mathcal M$ is finite\textup ; \textup {(ii)} $t_{\mathrm w\tau \mathrm l}= t_{\tau \mathrm l}$\textup ; \textup {(iii)} the multiplication is jointly $t_{\tau \mathrm l}$-continuous from $\widetilde {\mathcal M}\times \widetilde {\mathcal M}$ to $\widetilde {\mathcal M}$\textup ; \textup {(iv)} the multiplication is jointly $t_{\mathrm w\tau \mathrm l}$-continuous from $\widetilde {\mathcal M}\times \widetilde {\mathcal M}$ to $\widetilde {\mathcal M}$\textup ; \textup {(v)} the involution is $t_{\tau \mathrm l}$-continuous from $\widetilde {\mathcal M}$ to $\widetilde {\mathcal M}$.}
Received in November 2005
English version:
Proceedings of the Steklov Institute of Mathematics, 2006, Volume 255, Pages 35–48
DOI: https://doi.org/10.1134/S0081543806040043
Bibliographic databases:
UDC: 517.986+517.987
Language: Russian
Citation: A. M. Bikchentaev, “Local Convergence in Measure on Semifinite von Neumann Algebras”, Function spaces, approximation theory, and nonlinear analysis, Collected papers, Trudy Mat. Inst. Steklova, 255, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 41–54; Proc. Steklov Inst. Math., 255 (2006), 35–48
Citation in format AMSBIB
\Bibitem{Bik06}
\by A.~M.~Bikchentaev
\paper Local Convergence in Measure on Semifinite von Neumann Algebras
\inbook Function spaces, approximation theory, and nonlinear analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 255
\pages 41--54
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm252}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2301608}
\elib{https://elibrary.ru/item.asp?id=13516363}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 255
\pages 35--48
\crossref{https://doi.org/10.1134/S0081543806040043}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846881782}
Linking options:
  • https://www.mathnet.ru/eng/tm252
  • https://www.mathnet.ru/eng/tm/v255/p41
    Cycle of papers
    This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:819
    Full-text PDF :422
    References:250
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024