|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2001, Volume 235, Pages 211–223
(Mi tm245)
|
|
|
|
Nearly Optimal Algorithms for Univariate Polynomial Factorization and Rootfinding. II: Computing a Basic Annulus for Splitting
V. Ya. Pan Lehman College of The City University of New York, Mathematics and Computer Science Department
Abstract:
We describe some effective algorithms for the computation of a basic well isolated annulus over which we split a given univariate $n$th degree polynomial numerically into two factors. This is extended to recursive computation of the complete numerical factorization of a polynomial into the product of its linear factors and further to the approximation of its roots. The extension incorporates the earlier techniques of Schönhage and Kirrinnis and our old and new splitting techniques and yields nearly optimal (up to polylogarithmic factors) arithmetic and Boolean cost estimates for the complexity of both complete factorization and rootfinding. The improvement over our previous record Boolean complexity estimates is by roughly the factor of $n$ for complete factorization and also for the approximation of well-conditioned (well isolated) roots.
Received in April 2001
Citation:
V. Ya. Pan, “Nearly Optimal Algorithms for Univariate Polynomial Factorization and Rootfinding. II: Computing a Basic Annulus for Splitting”, Analytic and geometric issues of complex analysis, Collected papers. Dedicated to the 70th anniversary of academician Anatolii Georgievich Vitushkin, Trudy Mat. Inst. Steklova, 235, Nauka, MAIK «Nauka/Inteperiodika», M., 2001, 211–223; Proc. Steklov Inst. Math., 235 (2001), 202–214
Linking options:
https://www.mathnet.ru/eng/tm245 https://www.mathnet.ru/eng/tm/v235/p211
|
Statistics & downloads: |
Abstract page: | 182 | Full-text PDF : | 75 | References: | 40 |
|