Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 247, Pages 267–279 (Mi tm24)  

Extended Hyperbolic Surfaces in $R^3$

D. W. Henderson

Cornell University
References:
Abstract: In this paper, I will describe the construction of several surfaces whose intrinsic geometry is hyperbolic geometry, in the same sense that spherical geometry is the geometry of the standard sphere in Euclidean 3-space. I will prove that the intrinsic geometry of these surfaces is, in fact, (a close approximation of) hyperbolic geometry. I will share how I (and others) have used these surfaces to increase our own (and our students') experiential understanding of hyperbolic geometry. (How to find hyperbolic geodesics? What are horocycles? Does a hyperbolic plane have a radius? Where does the area formula $\pi r^2$ fit in hyperbolic geometry?).
Received in August 2003
Bibliographic databases:
UDC: 514.132
Language: English
Citation: D. W. Henderson, “Extended Hyperbolic Surfaces in $R^3$”, Geometric topology and set theory, Collected papers. Dedicated to the 100th birthday of professor Lyudmila Vsevolodovna Keldysh, Trudy Mat. Inst. Steklova, 247, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 267–279; Proc. Steklov Inst. Math., 247 (2004), 246–258
Citation in format AMSBIB
\Bibitem{Hen04}
\by D.~W.~Henderson
\paper Extended Hyperbolic Surfaces in~$R^3$
\inbook Geometric topology and set theory
\bookinfo Collected papers. Dedicated to the 100th birthday of professor Lyudmila Vsevolodovna Keldysh
\serial Trudy Mat. Inst. Steklova
\yr 2004
\vol 247
\pages 267--279
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm24}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2168177}
\zmath{https://zbmath.org/?q=an:1102.53002}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 247
\pages 246--258
Linking options:
  • https://www.mathnet.ru/eng/tm24
  • https://www.mathnet.ru/eng/tm/v247/p267
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:308
    Full-text PDF :128
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024