|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2001, Volume 232, Pages 248–267
(Mi tm217)
|
|
|
|
This article is cited in 27 scientific papers (total in 28 papers)
Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on $\mathbb R_+^{n+1}$
E. Mitidieria, S. I. Pohozaevb a Dipartimento di Scienze Matematiche, Università degli Studi di Trieste, Via A. Valerio 12/1, 34127, Trieste, Italia
b Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
Theorems concerning the absence of weak solutions are proved for a wide class of evolution equations and inequalities. This class includes, in particular, the inequalities with degenerate and singular operators of hyperbolic type.
Received in August 2000
Citation:
E. Mitidieri, S. I. Pohozaev, “Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on $\mathbb R_+^{n+1}$”, Function spaces, harmonic analysis, and differential equations, Collected papers. Dedicated to the 95th anniversary of academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 232, Nauka, MAIK «Nauka/Inteperiodika», M., 2001, 248–267; Proc. Steklov Inst. Math., 232 (2001), 240–259
Linking options:
https://www.mathnet.ru/eng/tm217 https://www.mathnet.ru/eng/tm/v232/p248
|
Statistics & downloads: |
Abstract page: | 483 | Full-text PDF : | 185 | References: | 60 |
|