|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 247, Pages 237–246
(Mi tm21)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Dual Homology for the de Rham Cohomology
E. G. Sklyarenko M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
A divergence operator $\operatorname {div}$ acting on the graded space $\Omega _*(M)$ of smooth multivector fields on a smooth manifold $M$ is defined. This operator turns $\Omega _*(M)$ into a chain complex defining the usual homology of $M$.
Received in March 2004
Citation:
E. G. Sklyarenko, “Dual Homology for the de Rham Cohomology”, Geometric topology and set theory, Collected papers. Dedicated to the 100th birthday of professor Lyudmila Vsevolodovna Keldysh, Trudy Mat. Inst. Steklova, 247, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 237–246; Proc. Steklov Inst. Math., 247 (2004), 217–226
Linking options:
https://www.mathnet.ru/eng/tm21 https://www.mathnet.ru/eng/tm/v247/p237
|
Statistics & downloads: |
Abstract page: | 450 | Full-text PDF : | 153 | References: | 77 |
|