|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 245, Pages 264–272
(Mi tm192)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Perturbed Dynamical Systems in $\mathfrak p$-Adic Fields
P.-A. Svensson Växjö University
Abstract:
Let $k$ be a $\mathfrak p$-adic field, and let $\mathcal D$ be the class of all discrete dynamical systems defined by polynomials of the kind $h(x)=x+g(x)$, where $g(x)\in k[x]$ is irreducible. Using Krasner's lemma as a tool, we investigate the stability of this class with respect to perturbations of the kind $h_r(x)=h(x)+r(x)$, where $h(x)\in \mathcal D$ and $r(x)\in k[x]$.
Received in October 2003
Citation:
P.-A. Svensson, “Perturbed Dynamical Systems in $\mathfrak p$-Adic Fields”, Selected topics of $p$-adic mathematical physics and analysis, Collected papers. Dedicated to the 80th birthday of academician Vasilii Sergeevich Vladimirov, Trudy Mat. Inst. Steklova, 245, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 264–272; Proc. Steklov Inst. Math., 245 (2004), 250–257
Linking options:
https://www.mathnet.ru/eng/tm192 https://www.mathnet.ru/eng/tm/v245/p264
|
|