Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Volume 266, Pages 149–183 (Mi tm1880)  

This article is cited in 17 scientific papers (total in 17 papers)

The van Kampen Obstruction and Its Relatives

S. A. Melikhov

Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We review a cochain-free treatment of the classical van Kampen obstruction ϑ to embeddability of an n-polyhedron in R2n and consider several analogs and generalizations of ϑ, including an extraordinary lift of ϑ, which has been studied by J.-P. Dax in the manifold case. The following results are obtained:
(1) The mod2 reduction of ϑ is incomplete, which answers a question of Sarkaria.
(2) An odd-dimensional analog of ϑ is a complete obstruction to linkless embeddability (=“intrinsic unlinking”) of a given n-polyhedron in R2n+1.
(3) A “blown-up” one-parameter version of ϑ is a universal type 1 invariant of singular knots, i.e., knots in R3 with a finite number of rigid transverse double points. We use it to decide in simple homological terms when a given integer-valued type 1 invariant of singular knots admits an integral arrow diagram (=Polyak–Viro) formula.
(4) Settling a problem of Yashchenko in the metastable range, we find that every PL manifold N nonembeddable in a given Rm, m, contains a subset X such that no map N\to\mathbb R^m sends X and N\setminus X to disjoint sets.
(5) We elaborate on McCrory's analysis of the Zeeman spectral sequence to geometrically characterize "k-co-connected and locally k-co-connected" polyhedra, which we embed in \mathbb R^{2n-k} for k<\frac{n-3}2, thus extending the Penrose–Whitehead–Zeeman theorem.
Received in May 2009
English version:
Proceedings of the Steklov Institute of Mathematics, 2009, Volume 266, Pages 142–176
DOI: https://doi.org/10.1134/S0081543809030092
Bibliographic databases:
Document Type: Article
UDC: 515.164.6+515.162.8+515.148
Language: English
Citation: S. A. Melikhov, “The van Kampen Obstruction and Its Relatives”, Geometry, topology, and mathematical physics. II, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 266, MAIK Nauka/Interperiodica, Moscow, 2009, 149–183; Proc. Steklov Inst. Math., 266 (2009), 142–176
Citation in format AMSBIB
\Bibitem{Mel09}
\by S.~A.~Melikhov
\paper The van Kampen Obstruction and Its Relatives
\inbook Geometry, topology, and mathematical physics.~II
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 266
\pages 149--183
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm1880}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2603266}
\zmath{https://zbmath.org/?q=an:1196.57019}
\elib{https://elibrary.ru/item.asp?id=12901683}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 266
\pages 142--176
\crossref{https://doi.org/10.1134/S0081543809030092}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000270722100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350349674}
Linking options:
  • https://www.mathnet.ru/eng/tm1880
  • https://www.mathnet.ru/eng/tm/v266/p149
  • This publication is cited in the following 17 articles:
    1. Pavel Paták, Martin Tancer, “Embeddings of k-Complexes into 2k-Manifolds”, Discrete Comput Geom, 71:3 (2024), 960  crossref
    2. S. Parsa, A. Skopenkov, “On embeddability of joins and their 'factors'”, Topology and its Applications, 326 (2023), 108409  crossref
    3. Salman Parsa, “Instability of the Smith index under joins and applications to embeddability”, Trans. Amer. Math. Soc., 375:10 (2022), 7149  crossref
    4. Schreve K., “Properly Discontinuous Actions Versus Uniform Embeddings”, Group. Geom. Dyn., 15:3 (2021), 1015–1039  crossref  mathscinet  isi
    5. P. M. Akhmetiev, S. A. Melikhov, “Projected and near-projected embeddings”, Zap. nauchn. sem. POMI, 498 (2020), 75–104  mathnet
    6. A. B. Skopenkov, “A user's guide to the topological Tverberg conjecture”, Russian Math. Surveys, 73:2 (2018), 323–353  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Xavier Goaoc, Pavel Paták, Zuzana Patáková, Martin Tancer, Uli Wagner, A Journey Through Discrete Mathematics, 2017, 407  crossref
    8. S. A. Melikhov, “Transverse fundamental group and projected embeddings”, Proc. Steklov Inst. Math., 290:1 (2015), 155–165  mathnet  crossref  crossref  isi  elib  elib
    9. Oleg R. Musin, Alexey Yu. Volovikov, “Borsuk–Ulam type spaces”, Mosc. Math. J., 15:4 (2015), 749–766  mathnet  crossref  mathscinet
    10. Freedman M., Krushkal V., “Geometric Complexity of Embeddings in R-D”, Geom. Funct. Anal., 24:5 (2014), 1406–1430  crossref  mathscinet  zmath  isi  elib  scopus
    11. Goncalves D., Skopenkov A., “a Useful Lemma on Equivariant Maps”, Homol. Homotopy Appl., 16:2 (2014), 307–309  crossref  mathscinet  zmath  isi  elib  scopus
    12. Martin Tancer, Kathrin Vorwerk, “Non-Embeddability of Geometric Lattices and Buildings”, Discrete Comput Geom, 51:4 (2014), 779  crossref
    13. Christopher Tuffley, “Some Ramsey-type results on intrinsic linking ofn–complexes”, Algebr. Geom. Topol., 13:3 (2013), 1579  crossref
    14. Uli Wagner, Thirty Essays on Geometric Graph Theory, 2013, 569  crossref
    15. Matoušek J., Tancer M., Wagner U., “Hardness of embedding simplicial complexes in $\mathbb R^d$”, J. Eur. Math. Soc. (JEMS), 13:2 (2011), 259–295  crossref  mathscinet  zmath  isi  scopus
    16. Wagner U., “Minors in random and expanding hypergraphs”, Computational Geometry (SCG 11), 2011, 351–360  mathscinet  zmath  isi
    17. Uli Wagner, Proceedings of the twenty-seventh annual symposium on Computational geometry, 2011, 351  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :116
    References:83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025