Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 245, Pages 210–217 (Mi tm186)  

This article is cited in 1 scientific paper (total in 1 paper)

The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems

M. Nilsson, R. Nyqvist

Växjö University
Full-text PDF (179 kB) Citations (1)
References:
Abstract: Let $A(n,a,y)$ denote a specific weighted average of different zeros of $f^n(x)-x$ for all prime numbers $p\leq y$, where $f(x)=x^p+ax\in\mathbb{F}_p[x]$, $a\neq 0$, and $f^n$ denotes the $n$-fold composition of $f$ by itself. If $a=1$, then $A(n, a, x)\to 0$ as $x\to\infty$, and if $a>1$, then $A(n,a,x) \to 1$ as $x \to \infty$. We also discuss a method for counting the number of linear factors of a polynomial whose zeros are $n$-periodic points of $f(x)\in\mathbb Z[x]$ by using a theorem of Frobenius. Finally, we obtain some results in the monomial case over $p$-adic numbers by using this method.
Received in December 2003
Bibliographic databases:
UDC: 517.94+512.625
Language: English
Citation: M. Nilsson, R. Nyqvist, “The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems”, Selected topics of $p$-adic mathematical physics and analysis, Collected papers. Dedicated to the 80th birthday of academician Vasilii Sergeevich Vladimirov, Trudy Mat. Inst. Steklova, 245, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 210–217; Proc. Steklov Inst. Math., 245 (2004), 197–204
Citation in format AMSBIB
\Bibitem{NilNyq04}
\by M.~Nilsson, R.~Nyqvist
\paper The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems
\inbook Selected topics of $p$-adic mathematical physics and analysis
\bookinfo Collected papers. Dedicated to the 80th birthday of academician Vasilii Sergeevich Vladimirov
\serial Trudy Mat. Inst. Steklova
\yr 2004
\vol 245
\pages 210--217
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm186}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2099883}
\zmath{https://zbmath.org/?q=an:1098.37048}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 245
\pages 197--204
Linking options:
  • https://www.mathnet.ru/eng/tm186
  • https://www.mathnet.ru/eng/tm/v245/p210
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :101
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024