Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 245, Pages 86–90 (Mi tm174)  

Shilov Boundary and Topological Divisors of Zero

A. Escassut

Laboratoire de Mathematiques Pures, University Blaise Pascal (Clermont-Ferrand)
References:
Abstract: Let $E$ be a field complete with respect to a nontrivial Archimedean or non-Archimedean ultrametric absolute value and let $(A,\|\cdot \|)$ be a commutative normed $E$-algebra with unity whose spectral seminorm is $\|\cdot \|_{\mathrm {si}}$. Let $\operatorname {Mult}(A,\|\cdot \|)$ be the set of continuous multiplicative seminorms of $A$ and let $\mathcal S$ be the Shilov boundary for $(A,\|\cdot \|_{\mathrm {si}})$. An element $\psi$ of $\operatorname {Mult}(A,\|\cdot \|_{\mathrm {si}})$ belongs to $\mathcal S$ if and only if, for every neighborhood $\mathcal U$ of $\psi$ in $\operatorname {Mult}(A,\|\cdot \|)$, there exist $\theta\in{\mathcal U}$ and $g\in A$ that satisfy $\|g\|_{\mathrm {si}}=\theta (g)$ and $\gamma (g)<\|g\|_{\mathrm {si}}$ for all $\gamma \in {\mathcal S}\setminus U$. Suppose that $A$ is uniform and $f\in A$. Then, $f$ is a topological divisor of zero if and only if there exists $\psi\in\mathcal S$ such that $\psi(f)=0$. Moreover, if $f$ is not a divisor of zero, then it is a topological divisor of zero if and only if the ideal $fA$ is not closed in $A$. Suppose that $A$ is ultrametric, complete, and Noetherian. All topological divisors of zero are divisors of zero. This applies to affinoid algebras. Let $A$ be a Krasner algebra $H(D)$ without nontrivial idempotents: an element $f\in H(D)$ is a topological divisor of zero if and only if $fH(D)$ is a closed ideal; moreover, $H(D)$ is a principal ideal ring if and only if it has no topological divisors of zero but $0$ (this new condition adds to the well-known set of equivalent conditions found in 1969).
Received in October 2003
Bibliographic databases:
UDC: 517.94
Language: English
Citation: A. Escassut, “Shilov Boundary and Topological Divisors of Zero”, Selected topics of $p$-adic mathematical physics and analysis, Collected papers. Dedicated to the 80th birthday of academician Vasilii Sergeevich Vladimirov, Trudy Mat. Inst. Steklova, 245, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 86–90; Proc. Steklov Inst. Math., 245 (2004), 78–82
Citation in format AMSBIB
\Bibitem{Esc04}
\by A.~Escassut
\paper Shilov Boundary and Topological Divisors of Zero
\inbook Selected topics of $p$-adic mathematical physics and analysis
\bookinfo Collected papers. Dedicated to the 80th birthday of academician Vasilii Sergeevich Vladimirov
\serial Trudy Mat. Inst. Steklova
\yr 2004
\vol 245
\pages 86--90
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm174}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2099871}
\zmath{https://zbmath.org/?q=an:1098.46056}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 245
\pages 78--82
Linking options:
  • https://www.mathnet.ru/eng/tm174
  • https://www.mathnet.ru/eng/tm/v245/p86
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024