Trudy Matematicheskogo Instituta imeni V. A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V. A. Steklova, 1965, Volume 76, Pages 124–129 (Mi tm1661)  

This article is cited in 4 scientific papers (total in 4 papers)

Chebyshev networks in manifolds of bounded curvature

I. Ya. Bakelman
Full-text PDF (733 kB) Citations (4)
Bibliographic databases:
Language: Russian
Citation: I. Ya. Bakelman, “Chebyshev networks in manifolds of bounded curvature”, Two-dimensional manifolds of bounded curvature. Part II. Collection of articles on the intrinsic geometry of surfaces, Trudy Mat. Inst. Steklov., 76, Nauka, Moscow–Leningrad, 1965, 124–129
Citation in format AMSBIB
\Bibitem{Bak65}
\by I.~Ya.~Bakelman
\paper Chebyshev networks in manifolds of bounded curvature
\inbook Two-dimensional manifolds of bounded curvature. Part~II. Collection of articles on the intrinsic geometry of surfaces
\serial Trudy Mat. Inst. Steklov.
\yr 1965
\vol 76
\pages 124--129
\publ Nauka
\publaddr Moscow--Leningrad
\mathnet{http://mi.mathnet.ru/tm1661}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=209988}
\zmath{https://zbmath.org/?q=an:0171.43203}
Linking options:
  • https://www.mathnet.ru/eng/tm1661
  • https://www.mathnet.ru/eng/tm/v76/p124
  • This publication is cited in the following 4 articles:
    1. Yu. D. Burago, S. V. Ivanov, S. G. Malev, “Remarks on Chebyshev coordinates”, J. Math. Sci. (N. Y.), 140:4 (2007), 497–501  mathnet  crossref  mathscinet  zmath
    2. V. A. Garanzha, “Bi-Lipschitz parameterizations of nonsmooth surfaces and surface grid generation”, Comput. Math. Math. Phys., 45:8 (2005), 1334–1349  mathnet  mathscinet  zmath
    3. A. S. Belen'kii, Yu. D. Burago, “Bi-Lipschitz-equivalent Aleksandrov surfaces. I”, St. Petersburg Math. J., 16:4 (2005), 627–638  mathnet  crossref  mathscinet  zmath
    4. Yu. Burago, “Bilipschitz equivalent Aleksandrov srfaces. II”, St. Petersburg Math. J., 16:6 (2005), 943–960  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:377
    Full-text PDF :189
    References:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025