Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 246, Pages 263–276 (Mi tm159)  

This article is cited in 8 scientific papers (total in 8 papers)

Hyperkähler Manifolds and Seiberg–Witten Equations

V. Ya. Pidstrigach

Mathematisches Institut, Georg-August-Universität Göttingen
Full-text PDF (251 kB) Citations (8)
References:
Abstract: The mathematical properties of the so-called gauged nonlinear $\sigma$-model in dimension 4 are studied. An important element of the construction is a nonlinear generalization of the Dirac operator on a 4-manifold such that the fiber of the spinor vector bundle, a copy of quaternions $\mathbb H$, is replaced by a hyperkähler manifold endowed with a hyperkähler Lie group action and an additional symmetry. This Dirac operator is used to define Seiberg–Witten moduli spaces. An explicit Weitzenböck formula for such a Dirac operator is derived and applied to describe some properties of the Seiberg–Witten moduli spaces.
Received in February 2004
Bibliographic databases:
UDC: 514.7+514.8
Language: Russian
Citation: V. Ya. Pidstrigach, “Hyperkähler Manifolds and Seiberg–Witten Equations”, Algebraic geometry: Methods, relations, and applications, Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin, corresponding member of the Russian Academy of Sciences, Trudy Mat. Inst. Steklova, 246, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 263–276; Proc. Steklov Inst. Math., 246 (2004), 249–262
Citation in format AMSBIB
\Bibitem{Pid04}
\by V.~Ya.~Pidstrigach
\paper Hyperk\"ahler Manifolds and Seiberg--Witten Equations
\inbook Algebraic geometry: Methods, relations, and applications
\bookinfo Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin, corresponding member of the Russian Academy of Sciences
\serial Trudy Mat. Inst. Steklova
\yr 2004
\vol 246
\pages 263--276
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm159}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101297}
\zmath{https://zbmath.org/?q=an:1101.53026}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 246
\pages 249--262
Linking options:
  • https://www.mathnet.ru/eng/tm159
  • https://www.mathnet.ru/eng/tm/v246/p263
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024