Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 246, Pages 217–239 (Mi tm157)  

This article is cited in 4 scientific papers (total in 4 papers)

On Correspondences of a K3 Surface with Itself. I

V. V. Nikulinab

a Steklov Mathematical Institute, Russian Academy of Sciences
b University of Liverpool
Full-text PDF (296 kB) Citations (4)
References:
Abstract: Let $X$ be a K3 surface with a polarization $H$ of degree $H^2=2rs$, $r,s\ge 1$. Assume that $H\cdot N(X)=\mathbb Z$ for the Picard lattice $N(X)$. The moduli space of sheaves over $X$ with the isotropic Mukai vector $(r,H,s)$ is again a K3 surface $Y$. We prove that $Y\cong X$ if there exists $h_1\in N(X)$ with $h_1^2=f(r,s)$, $H\cdot h_1\equiv 0\mathrm {\,mod}\ g(r,s)$, and $h_1$ satisfies some condition of primitivity. These conditions are necessary if $X$ is general with $\mathop {\mathrm{rk}}N(X)=2$. The existence of such kind of a riterion is surprising, and it also gives some geometric interpretation of elements in $N(X)$ with negative square. We describe all irreducible 18-dimensional components of the moduli space of pairs $(X,H)$ with $Y\cong X$. We prove that their number is always infinite. Earlier, similar results have been known only for $r=s$.
Received in February 2004
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: Russian
Citation: V. V. Nikulin, “On Correspondences of a K3 Surface with Itself. I”, Algebraic geometry: Methods, relations, and applications, Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin, corresponding member of the Russian Academy of Sciences, Trudy Mat. Inst. Steklova, 246, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 217–239; Proc. Steklov Inst. Math., 246 (2004), 204–226
Citation in format AMSBIB
\Bibitem{Nik04}
\by V.~V.~Nikulin
\paper On Correspondences of a~K3 Surface with Itself.~I
\inbook Algebraic geometry: Methods, relations, and applications
\bookinfo Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin, corresponding member of the Russian Academy of Sciences
\serial Trudy Mat. Inst. Steklova
\yr 2004
\vol 246
\pages 217--239
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm157}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101295}
\zmath{https://zbmath.org/?q=an:1130.14030}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 246
\pages 204--226
Linking options:
  • https://www.mathnet.ru/eng/tm157
  • https://www.mathnet.ru/eng/tm/v246/p217
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :84
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024