Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 247, Pages 159–181 (Mi tm15)  

This article is cited in 11 scientific papers (total in 11 papers)

Sphere Eversions and Realization of Mappings

S. A. Melikhovab

a Steklov Mathematical Institute, Russian Academy of Sciences
b University of Florida
References:
Abstract: P. M. Akhmetiev used a controlled version of the stable Hopf invariant to show that any (continuous) map $N\to M$ between stably parallelizable compact $n$-manifolds, $n\ne 1,2,3,7$, is realizable in $\mathbb R^{2n}$, i.e., the composition of $f$ with an embedding $M\subset \mathbb R^{2n}$ is $C^0$-approximable by embeddings. It has been long believed that any degree-$2$ map $S^3\to S^3$ obtained by capping off at infinity a time-symmetric (e.g., Shapiro's) sphere eversion $S^2\times I\to \mathbb R^3$ is nonrealizable in $\mathbb R^6$. We show that there exists a self-map of the Poincaré homology 3-sphere that is nonrealizable in $\mathbb R^6$, but every self-map of $S^n$ is realizable in $\mathbb R^{2n}$ for each $n>2$. The latter, together with a ten-line proof for $n=2$ due essentially to M. Yamamoto, implies that every inverse limit of $n$-spheres embeds in $\mathbb R^{2n}$ for $n>1$, which settles R. Daverman's 1990 problem. If $M$ is a closed orientable 3-manifold, we show that a map $S^3\to M$ that is nonrealizable in $\mathbb R^6$ exists if and only if $\pi _1(M)$ is finite and has even order. As a byproduct, an element of the stable stem $\Pi _3$ with nontrivial stable Hopf invariant is represented by a particularly simple immersion $S^3\looparrowright \mathbb R^4$, namely, by the composition of the universal $8$-covering over $Q^3=S^3/\{\pm 1,\pm i,\pm j,\pm k\}$ and an explicit embedding $Q^3\hookrightarrow \mathbb R^4$.
Received in March 2004
Bibliographic databases:
Document Type: Article
UDC: 515.163.6
Language: Russian
Citation: S. A. Melikhov, “Sphere Eversions and Realization of Mappings”, Geometric topology and set theory, Collected papers. Dedicated to the 100th birthday of professor Lyudmila Vsevolodovna Keldysh, Trudy Mat. Inst. Steklova, 247, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 159–181; Proc. Steklov Inst. Math., 247 (2004), 143–163
Citation in format AMSBIB
\Bibitem{Mel04}
\by S.~A.~Melikhov
\paper Sphere Eversions and Realization of Mappings
\inbook Geometric topology and set theory
\bookinfo Collected papers. Dedicated to the 100th birthday of professor Lyudmila Vsevolodovna Keldysh
\serial Trudy Mat. Inst. Steklova
\yr 2004
\vol 247
\pages 159--181
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm15}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2168168}
\zmath{https://zbmath.org/?q=an:1107.57013}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 247
\pages 143--163
Linking options:
  • https://www.mathnet.ru/eng/tm15
  • https://www.mathnet.ru/eng/tm/v247/p159
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:460
    Full-text PDF :194
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024