|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 247, Pages 159–181
(Mi tm15)
|
|
|
|
This article is cited in 11 scientific papers (total in 11 papers)
Sphere Eversions and Realization of Mappings
S. A. Melikhovab a Steklov Mathematical Institute, Russian Academy of Sciences
b University of Florida
Abstract:
P. M. Akhmetiev used a controlled version of the stable Hopf invariant to show that any (continuous) map $N\to M$ between stably parallelizable compact $n$-manifolds, $n\ne 1,2,3,7$, is realizable in $\mathbb R^{2n}$, i.e., the composition of $f$ with an embedding $M\subset \mathbb R^{2n}$ is $C^0$-approximable by embeddings. It has been long believed that any degree-$2$ map $S^3\to S^3$ obtained by capping off at infinity a time-symmetric (e.g., Shapiro's) sphere eversion $S^2\times I\to \mathbb R^3$ is nonrealizable in $\mathbb R^6$. We show that there exists a self-map of the Poincaré homology 3-sphere that is nonrealizable in $\mathbb R^6$, but every self-map of $S^n$ is realizable in $\mathbb R^{2n}$ for each $n>2$. The latter, together with a ten-line proof for $n=2$ due essentially to M. Yamamoto, implies that every inverse limit of $n$-spheres embeds in $\mathbb R^{2n}$ for $n>1$, which settles R. Daverman's 1990 problem. If $M$ is a closed orientable 3-manifold, we show that a map $S^3\to M$ that is nonrealizable in $\mathbb R^6$ exists if and only if $\pi _1(M)$ is finite and has even order. As a byproduct, an element of the stable stem $\Pi _3$ with nontrivial stable Hopf invariant is represented by a particularly simple immersion $S^3\looparrowright \mathbb R^4$, namely, by the composition of the universal $8$-covering over $Q^3=S^3/\{\pm 1,\pm i,\pm j,\pm k\}$ and an explicit embedding $Q^3\hookrightarrow \mathbb R^4$.
Received in March 2004
Citation:
S. A. Melikhov, “Sphere Eversions and Realization of Mappings”, Geometric topology and set theory, Collected papers. Dedicated to the 100th birthday of professor Lyudmila Vsevolodovna Keldysh, Trudy Mat. Inst. Steklova, 247, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 159–181; Proc. Steklov Inst. Math., 247 (2004), 143–163
Linking options:
https://www.mathnet.ru/eng/tm15 https://www.mathnet.ru/eng/tm/v247/p159
|
Statistics & downloads: |
Abstract page: | 460 | Full-text PDF : | 194 | References: | 52 |
|