Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 246, Pages 106–115 (Mi tm148)  

This article is cited in 24 scientific papers (total in 25 papers)

On the Zero Slice of the Sphere Spectrum

V. A. Voevodskii

Institute for Advanced Study, School of Mathematics
References:
Abstract: We prove the motivic analogue of the statement saying that the zero stable homotopy group of spheres is $\mathbf Z$. In topology, this is equivalent to the fact that the fiber of the obvious map from the sphere $S^n$ to the Eilenberg–MacLane space $K(\mathbf Z,n)$ is $(n+1)$-connected. We prove our motivic analogue by an explicit geometric investigation of a similar map in the motivic world. Since we use the model of the motivic Eilenberg–MacLane spaces based on the symmetric powers, our proof works only in zero characteristic.
Received in February 2004
Bibliographic databases:
UDC: 512.7
Language: English
Citation: V. A. Voevodskii, “On the Zero Slice of the Sphere Spectrum”, Algebraic geometry: Methods, relations, and applications, Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin, corresponding member of the Russian Academy of Sciences, Trudy Mat. Inst. Steklova, 246, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 106–115; Proc. Steklov Inst. Math., 246 (2004), 93–102
Citation in format AMSBIB
\Bibitem{Voe04}
\by V.~A.~Voevodskii
\paper On the Zero Slice of the Sphere Spectrum
\inbook Algebraic geometry: Methods, relations, and applications
\bookinfo Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin, corresponding member of the Russian Academy of Sciences
\serial Trudy Mat. Inst. Steklova
\yr 2004
\vol 246
\pages 106--115
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm148}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101286}
\zmath{https://zbmath.org/?q=an:1182.14012}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 246
\pages 93--102
Linking options:
  • https://www.mathnet.ru/eng/tm148
  • https://www.mathnet.ru/eng/tm/v246/p106
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024