Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 246, Pages 64–91 (Mi tm146)  

This article is cited in 30 scientific papers (total in 30 papers)

Vanishing Theorems for Locally Conformal Hyperkähler Manifolds

M. S. Verbitsky

University of Glasgow
References:
Abstract: Let M be a compact locally conformal hyperkähler manifold. We prove a version of the Kodaira–Nakano vanishing theorem for M. This is used to show that M admits no holomorphic differential forms and the cohomology of the structure sheaf Hi(OM) vanishes for i>1. We also prove that the first Betti number of M is 1. This leads to a structure theorem for locally conformal hyperkähler manifolds that describes them in terms of 3-Sasakian geometry. Similar results are proven for compact Einstein–Weyl locally conformal Kähler manifolds.
Received in February 2004
Bibliographic databases:
UDC: 514.764.226+515.179.22+515.165.4
Language: Russian
Citation: M. S. Verbitsky, “Vanishing Theorems for Locally Conformal Hyperkähler Manifolds”, Algebraic geometry: Methods, relations, and applications, Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin, corresponding member of the Russian Academy of Sciences, Trudy Mat. Inst. Steklova, 246, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 64–91; Proc. Steklov Inst. Math., 246 (2004), 54–78
Citation in format AMSBIB
\Bibitem{Ver04}
\by M.~S.~Verbitsky
\paper Vanishing Theorems for Locally Conformal Hyperk\"ahler Manifolds
\inbook Algebraic geometry: Methods, relations, and applications
\bookinfo Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin, corresponding member of the Russian Academy of Sciences
\serial Trudy Mat. Inst. Steklova
\yr 2004
\vol 246
\pages 64--91
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm146}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101284}
\zmath{https://zbmath.org/?q=an:1101.53027}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 246
\pages 54--78
Linking options:
  • https://www.mathnet.ru/eng/tm146
  • https://www.mathnet.ru/eng/tm/v246/p64
  • This publication is cited in the following 30 articles:
    1. Ornea L., Verbitsky M., “Twisted Dolbeault Cohomology of Nilpotent Lie Algebras”, Transform. Groups, 27:1 (2022), 225–238  crossref  mathscinet  isi  scopus
    2. Ornea L., Verbitsky M., “Supersymmetry and Hodge Theory on Sasakian and Vaisman Manifolds”, Manuscr. Math., 2022  crossref  mathscinet  isi
    3. Huang T., “On Harmonic Symmetries For Locally Conformally Kahler Manifolds”, Ann. Mat. Pura Appl., 2022  crossref  isi
    4. Ornea L., Verbitsky M., “Closed Orbits of Reeb Fields on Sasakian Manifolds and Elliptic Curves on Vaisman Manifolds”, Math. Z., 299:3-4 (2021), 2287–2296  crossref  mathscinet  isi  scopus
    5. Andrada A., Origlia M., “Vaisman Solvmanifolds and Relations With Other Geometric Structures”, Asian J. Math., 24:1 (2020), 117–146  crossref  mathscinet  isi
    6. Ornea L., Verbitsky M., “Hopf Surfaces in Locally Conformally Kahler Manifolds With Potential”, Geod. Dedic., 207:1 (2020), 219–226  crossref  mathscinet  isi
    7. Istrati N., “Existence Criteria For Special Locally Conformally Kahler Metrics”, Ann. Mat. Pura Appl., 198:2 (2019), 335–353  crossref  mathscinet  zmath  isi  scopus
    8. Angella D., Zedda M., “Isometric Immersions of Locally Conformally Kahler Manifolds”, Ann. Glob. Anal. Geom., 56:1 (2019), 37–55  crossref  mathscinet  isi  scopus
    9. Ornea L., Verbitsky M., “Positivity of Lck Potential”, J. Geom. Anal., 29:2 (2019), 1479–1489  crossref  mathscinet  isi  scopus
    10. Andrada A., Origlia M., “Locally Conformally Kahler Solvmanifolds: a Survey”, Complex Manifolds, 6:1 (2019), 65–87  crossref  mathscinet  isi
    11. Ornea L., Otiman A., “A Characterization of Compact Locally Conformally Hyperkahler Manifolds”, Ann. Mat. Pura Appl., 198:5 (2019), 1541–1549  crossref  mathscinet  isi
    12. Ornea L., Verbitsky M., Vuletescu V., “Weighted Bott-Chern and Dolbeault Cohomology For Lck-Manifolds With Potential”, J. Math. Soc. Jpn., 70:1 (2018), 409–422  crossref  mathscinet  zmath  isi  scopus
    13. Bazzoni G., “Locally Conformally Symplectic and Kahler Geometry”, EMS Surv. Math. Sci., 5:1-2 (2018), 129–154  crossref  mathscinet  zmath  isi
    14. Ornea L., Verbitsky M., “Locally Conformally Kahler Metrics Obtained From Pseudoconvex Shells”, Proc. Amer. Math. Soc., 144:1 (2016), 325–335  crossref  mathscinet  zmath  isi  elib  scopus
    15. Panov T., Ustinovskiy Yu., Verbitsky M., “Complex geometry of moment-angle manifolds”, Math. Z., 284:1-2 (2016), 309–333  crossref  mathscinet  zmath  isi  scopus
    16. Ornea L., Verbitsky M., “LCK rank of locally conformally K?hler manifolds with potential”, J. Geom. Phys., 107 (2016), 92–98  crossref  mathscinet  zmath  isi  elib  scopus
    17. Ornea L., Verbitsky M., “Automorphisms of Locally Conformally Kahler Manifolds”, Int Math Res Not, 2012, no. 4, 894–903  crossref  mathscinet  zmath  isi  elib  scopus
    18. Ornea L., Pilca M., “Remarks on the Product of Harmonic Forms”, Pacific J Math, 250:2 (2011), 353–363  crossref  mathscinet  zmath  isi  scopus
    19. Ornea L., Verbitsky M., “Oeljeklaus-Toma Manifolds Admitting No Complex Subvarieties”, Math Res Lett, 18:4 (2011), 747–754  crossref  mathscinet  zmath  isi  elib  scopus
    20. Verbitsky M., “Hodge theory on nearly Kahler manifolds”, Geometry & Topology, 15:4 (2011), 2111–2133  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:788
    Full-text PDF :346
    References:86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025