Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 246, Pages 64–91 (Mi tm146)  

This article is cited in 30 scientific papers (total in 30 papers)

Vanishing Theorems for Locally Conformal Hyperkähler Manifolds

M. S. Verbitsky

University of Glasgow
References:
Abstract: Let $M$ be a compact locally conformal hyperkähler manifold. We prove a version of the Kodaira–Nakano vanishing theorem for $M$. This is used to show that $M$ admits no holomorphic differential forms and the cohomology of the structure sheaf $H^i(\mathcal O_M)$ vanishes for $i>1$. We also prove that the first Betti number of $M$ is $1$. This leads to a structure theorem for locally conformal hyperkähler manifolds that describes them in terms of $3$-Sasakian geometry. Similar results are proven for compact Einstein–Weyl locally conformal Kähler manifolds.
Received in February 2004
Bibliographic databases:
UDC: 514.764.226+515.179.22+515.165.4
Language: Russian
Citation: M. S. Verbitsky, “Vanishing Theorems for Locally Conformal Hyperkähler Manifolds”, Algebraic geometry: Methods, relations, and applications, Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin, corresponding member of the Russian Academy of Sciences, Trudy Mat. Inst. Steklova, 246, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 64–91; Proc. Steklov Inst. Math., 246 (2004), 54–78
Citation in format AMSBIB
\Bibitem{Ver04}
\by M.~S.~Verbitsky
\paper Vanishing Theorems for Locally Conformal Hyperk\"ahler Manifolds
\inbook Algebraic geometry: Methods, relations, and applications
\bookinfo Collected papers. Dedicated to the memory of Andrei Nikolaevich Tyurin, corresponding member of the Russian Academy of Sciences
\serial Trudy Mat. Inst. Steklova
\yr 2004
\vol 246
\pages 64--91
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm146}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101284}
\zmath{https://zbmath.org/?q=an:1101.53027}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 246
\pages 54--78
Linking options:
  • https://www.mathnet.ru/eng/tm146
  • https://www.mathnet.ru/eng/tm/v246/p64
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024