|
Trudy Matematicheskogo Instituta im. V. A. Steklova, 1994, Volume 203, Pages 429–440
(Mi tm1347)
|
|
|
|
A pre-dual for the convolution algebra $\mathcal D^\prime(\Gamma+)$
V. Schmidt, P. Dierolf Trier University, Germany
Abstract:
Let $\mathcal D'(\Gamma+)$ denote the subspace of $\mathcal D(\mathbb R^n)'$ consisting of all distributions whose support is contained in a translate of the cone $\Gamma$. We construct a locally convex
space $\mathcal F(\Gamma+)$ consisting of $C^\infty$-functions on $\mathbb R^n$ such that $\mathcal D'(\Gamma+)$ is the dual of $\mathcal F(\Gamma+)$. We then discuss certain natural topologies on $\mathcal F(\Gamma+)$ and on $\mathcal D'(\Gamma+)$.
Received in May 1993
Citation:
V. Schmidt, P. Dierolf, “A pre-dual for the convolution algebra $\mathcal D^\prime(\Gamma+)$”, Selected problems of mathematical physics and analysis, Collection of articles. To seventy birthday of Academician V. S. Vladimirov, Trudy Mat. Inst. Steklov., 203, Nauka, Moscow, 1994, 429–440; Proc. Steklov Inst. Math., 203 (1995), 353–360
Linking options:
https://www.mathnet.ru/eng/tm1347 https://www.mathnet.ru/eng/tm/v203/p429
|
Statistics & downloads: |
Abstract page: | 108 | Full-text PDF : | 68 |
|