Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 248, Pages 237–249 (Mi tm134)  

This article is cited in 2 scientific papers (total in 2 papers)

An Extremal Property of Chebyshev Polynomials

V. D. Stepanov

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences
Full-text PDF (206 kB) Citations (2)
References:
Abstract: For any integer $k\ge 1$, in the metric of weighted classes $L^2(\omega )$, sharp two-sided inequalities of the form $\gamma _k\bigl |\int G^{(k)}(x) \nu _k(x)\,dx\bigr |^2\le \bigl [\mathrm {dist}_{L^2(\omega )}(G,\mathcal P_{k-1})\bigr ]^2\le \gamma _k\int \bigl |G^{(k)}(x)\bigr |^2\nu _k(x)\,dx$ are obtained for the distance between an element $G$ and the subspace $\mathcal P_{k-1}$ of all polynomials of degree ${\le }\,k-1$; these inequalities reduce to equalities for Chebyshev-type polynomials of degree $k$. On the real axis with $\omega (x)=\nu _k(x)=\frac {1}{\sqrt {2\pi }}\,e^{-x^2/2}$ and $\gamma _k=1/k!$, a precise extension of the Chernoff inequality ($k=1$) is obtained for all $k\ge 1$.
Received in September 2004
Bibliographic databases:
UDC: 517.51
Language: Russian
Citation: V. D. Stepanov, “An Extremal Property of Chebyshev Polynomials”, Studies on function theory and differential equations, Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 248, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 237–249; Proc. Steklov Inst. Math., 248 (2005), 230–242
Citation in format AMSBIB
\Bibitem{Ste05}
\by V.~D.~Stepanov
\paper An Extremal Property of Chebyshev Polynomials
\inbook Studies on function theory and differential equations
\bookinfo Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 248
\pages 237--249
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm134}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2165931}
\zmath{https://zbmath.org/?q=an:1125.41306}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 248
\pages 230--242
Linking options:
  • https://www.mathnet.ru/eng/tm134
  • https://www.mathnet.ru/eng/tm/v248/p237
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:404
    Full-text PDF :121
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024