Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 248, Pages 204–222 (Mi tm132)  

This article is cited in 1 scientific paper (total in 1 paper)

The Series $\sum\sum\frac{e^{2\pi imnx}}{mn}$ and a Problem of Chowla

K. I. Oskolkov

University of South Carolina
Full-text PDF (294 kB) Citations (1)
References:
Abstract: The double trigonometric series $U(x):=\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{e^{2\pi imnx}}{\pi mn}$ and $U(\chi,x):=\sum_{m=1}^\infty\sum_{n=1}^\infty\chi_{m,n}\frac{e^{2\pi imnx}}{\pi mn}$ with the hyperbolic phase and coordinate-wise slow multipliers $\chi_{m,n}$ are studied. Complete descriptions of the $\mathcal K$-convergence (summability) sets of the sine series $\Im U(x)$ and the cosine series $\Re U(x)$ are given. The $\mathcal K$-sum of a double series is defined as the common value of the limits of partial sums over expanding families of kites in $\mathbb N^2$. The latter include convex domains in the usual sense, such as rectangles, as well as nonconvex domains, for example, hyperbolic crosses $\{(m,n):1\le mn\le N\}$.
Received in September 2004
Bibliographic databases:
UDC: 517.518.47
Language: Russian
Citation: K. I. Oskolkov, “The Series $\sum\sum\frac{e^{2\pi imnx}}{mn}$ and a Problem of Chowla”, Studies on function theory and differential equations, Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 248, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 204–222; Proc. Steklov Inst. Math., 248 (2005), 197–215
Citation in format AMSBIB
\Bibitem{Osk05}
\by K.~I.~Oskolkov
\paper The Series $\sum\sum\frac{e^{2\pi imnx}}{mn}$ and a~Problem of Chowla
\inbook Studies on function theory and differential equations
\bookinfo Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 248
\pages 204--222
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm132}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2165929}
\zmath{https://zbmath.org/?q=an:1126.40001}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 248
\pages 197--215
Linking options:
  • https://www.mathnet.ru/eng/tm132
  • https://www.mathnet.ru/eng/tm/v248/p204
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:464
    Full-text PDF :150
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024