Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 248, Pages 153–163 (Mi tm128)  

This article is cited in 7 scientific papers (total in 7 papers)

Kipriyanov–Radon Transform

L. N. Lyakhov

Voronezh State University
Full-text PDF (204 kB) Citations (7)
References:
Abstract: A transformation $K_\gamma$ is considered; this transformation is similar to the Radon transform but is adapted to singular differential equations with the Bessel operator $B_{x_n}=\frac {\partial ^2}{\partial x_n^2} +\frac \gamma {x_n}\frac \partial {\partial x_n}$, $\gamma >0$, which is applied with respect to one of the variables. The following formulas are obtained: for the $K_\gamma$ transform of generalized shifts, for the $K_\gamma$ transform of generalized convolutions, a formula for calculating the $K_\gamma$ transform of a homogeneous linear singular differential operator with constant coefficients such that the operator $B_{x_n}$ acts in the last variable, and a formula for the action of this operator on the $K_\gamma$ transform of a test function. The main results of the paper are formulas for reconstructing functions from their $K_\gamma $ transforms. Three cases are considered: (a) the general case of $\gamma>0$, (b) the case when $\gamma>0$ is integer and $n+\gamma$ is odd, and (c) the case when $\gamma>0$ is integer and $n+\gamma $ is even. In case (a), inversion is obtained by applying mixed B-hypersingular integrals. In cases (b) and (c), integer positive powers of the Laplace–Bessel operator $\Delta _{\mathrm B}=\Delta _{x'}+B_{x_n}$ are applied, where $\Delta _{x'}$ is the Laplace operator in the variables $x'=(x_1,\dots ,x_{n-1})$.
Received in September 2004
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: L. N. Lyakhov, “Kipriyanov–Radon Transform”, Studies on function theory and differential equations, Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 248, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 153–163; Proc. Steklov Inst. Math., 248 (2005), 147–157
Citation in format AMSBIB
\Bibitem{Lya05}
\by L.~N.~Lyakhov
\paper Kipriyanov--Radon Transform
\inbook Studies on function theory and differential equations
\bookinfo Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 248
\pages 153--163
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm128}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2165925}
\zmath{https://zbmath.org/?q=an:1121.44002}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 248
\pages 147--157
Linking options:
  • https://www.mathnet.ru/eng/tm128
  • https://www.mathnet.ru/eng/tm/v248/p153
  • This publication is cited in the following 7 articles:
    1. L. N. Lyakhov, V. A. Kalitvin, M. G. Lapshina, “Dvoistvennoe preobrazovanie Radona—Kipriyanova. Osnovnye svoistva”, Trudy Voronezhskoi zimnei matematicheskoi shkoly S. G. Kreina — 2024, SMFN, 70, no. 4, Rossiiskii universitet druzhby narodov, M., 2024, 643–653  mathnet  crossref
    2. L. N. Lyakhov, M. G. Lapshina, S. A. Roschupkin, “Teorema o nositele dlya $K_\gamma$-preobrazovaniya Radona—Kipriyanova”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 171, VINITI RAN, M., 2019, 118–124  mathnet  crossref
    3. Lyakhov L.N., Lapshina M.G., Roshchupkin S.A., “Complete Radon-Kipriyanov Transform: Some Properties”, Dokl. Math., 100:3 (2019), 524–528  crossref  mathscinet  isi  scopus
    4. L. N. Lyakhov, “The Radon–Kipriyanov Transform of the Generalized Spherical Mean of a Function”, Math. Notes, 100:1 (2016), 100–112  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Lyakhov L.N., “RK$\gamma$-Transform with gamma is an element of $(0,2]$ of Weighted Spherical Means of Functions and Asgeirsson Relations”, Doklady Mathematics, 84:1 (2011), 531–534  crossref  mathscinet  zmath  isi  elib  elib  scopus
    6. Lyakhov L.N., “Radon and Radon-Kipriyanov transforms of spherically symmetric functions”, Dokl. Math., 77:2 (2008), 229–233  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
    7. Gotz E.G., Lyakhov L.N., “Inversion of the Kipriyanov–Radon transform by means of Grünwald–Letnikov–Riesz fractional differentiation”, Dokl. Math., 75:1 (2007), 5–8  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:686
    Full-text PDF :248
    References:97
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025