Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 248, Pages 106–116 (Mi tm123)  

This article is cited in 6 scientific papers (total in 6 papers)

The Riesz–Radon Problem of Characterizing Integrals and the Weak Compactness of Radon Measures

V. K. Zakharov

Centre for New Information Technologies, Moscow State University
Full-text PDF (205 kB) Citations (6)
References:
Abstract: The problem of characterizing integrals considered in this paper dates back to the fundamental works of Riesz (1909), Radon (1913), and Frechet 1914). A solution to this problem is given in the form of a general parametric theorem, which implies the following theorems as particular cases: (1) the Riesz–Radon theorem for a locally compact space, (2) the Prokhorov theorem for a Tikhonov space, and (3) an integral representation theorem for an arbitrary Hausdorff space. A weak compactness criterion for the sets of bounded Radon measures on an arbitrary Hausdorff space is derived as an application of the last theorem. This criterion dates back to the Prokhorov criterion for a Polish space and to the Prokhorov–Le Cam theorem for a Tikhonov space.
Received in October 2004
Bibliographic databases:
UDC: 517.987.1+517.518.1+517.982.3
Language: Russian
Citation: V. K. Zakharov, “The Riesz–Radon Problem of Characterizing Integrals and the Weak Compactness of Radon Measures”, Studies on function theory and differential equations, Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 248, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 106–116; Proc. Steklov Inst. Math., 248 (2005), 101–110
Citation in format AMSBIB
\Bibitem{Zak05}
\by V.~K.~Zakharov
\paper The Riesz--Radon Problem of Characterizing Integrals and the Weak Compactness of Radon Measures
\inbook Studies on function theory and differential equations
\bookinfo Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 248
\pages 106--116
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm123}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2165920}
\zmath{https://zbmath.org/?q=an:1129.28013}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 248
\pages 101--110
Linking options:
  • https://www.mathnet.ru/eng/tm123
  • https://www.mathnet.ru/eng/tm/v248/p106
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :122
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024