Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 248, Pages 86–93 (Mi tm121)  

A Block Method for Solving the Laplace Equation in a Disk with a Hole That Has Cuts

E. A. Volkov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: A numerical–analytic block method proposed by the author is applied to construct an approximate solution to the Dirichlet problem for the Laplace equation in a disk with an elliptic hole that has two cuts. The construction employs two blocks–rings and an elementary conformal mapping. It is shown that the approximate solution converges, in the uniform metric, exponentially with respect to the order of a rapidly solvable system of linear algebraic equations.
Received in October 2004
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. A. Volkov, “A Block Method for Solving the Laplace Equation in a Disk with a Hole That Has Cuts”, Studies on function theory and differential equations, Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 248, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 86–93; Proc. Steklov Inst. Math., 248 (2005), 81–88
Citation in format AMSBIB
\Bibitem{Vol05}
\by E.~A.~Volkov
\paper A~Block Method for Solving the Laplace Equation in a~Disk with a~Hole That Has Cuts
\inbook Studies on function theory and differential equations
\bookinfo Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 248
\pages 86--93
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm121}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2165918}
\zmath{https://zbmath.org/?q=an:1152.35340}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 248
\pages 81--88
Linking options:
  • https://www.mathnet.ru/eng/tm121
  • https://www.mathnet.ru/eng/tm/v248/p86
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:432
    Full-text PDF :119
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024