|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 248, Pages 46–51
(Mi tm117)
|
|
|
|
Critical Exponents for Nondiagonal Quasilinear Parabolic Systems
K. O. Besov Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
Using the method of nonlinear capacity (integral relations), critical exponents for the nonexistence of nontrivial nonnegative solutions are found for the Cauchy problem for systems of inequalities of the form $(u_i)_t-\operatorname {div} A_i(t,x,u_i,\nabla u_i)\ge b_i\prod _{j=1}^2 u_j^{Q_{ij}}+f_i$, where $Q_{ij}\ge 0$, $u_i=u_i(t,x)\ge 0$, $b_i=b_i(t,x)\ge 0$, and $f_i=f_i(t,x)\ge 0$, $x\in \mathbb R^N$, $t\ge 0$. Under additional assumptions concerning the functions $A_i$, a priori estimates and estimates of the lifespan of solutions are obtained in terms of the behavior of initial data and the functions $f_i$.
Received in January 2005
Citation:
K. O. Besov, “Critical Exponents for Nondiagonal Quasilinear Parabolic Systems”, Studies on function theory and differential equations, Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 248, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 46–51; Proc. Steklov Inst. Math., 248 (2005), 41–46
Linking options:
https://www.mathnet.ru/eng/tm117 https://www.mathnet.ru/eng/tm/v248/p46
|
|