Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 254, Pages 215–246 (Mi tm110)  

This article is cited in 1 scientific paper (total in 1 paper)

Weak Infinitesimal Hilbert's 16th Problem

I. A. Khovanskaya (Pushkar')

State University – Higher School of Economics
Full-text PDF (381 kB) Citations (1)
References:
Abstract: The following weak infinitesimal Hilbert's 16th problem is solved. Given a real polynomial $H$ in two variables, denote by $M(H,m)$ the maximal number possessing the following property: for any generic set $\{\gamma _i\}$ of at most $M(H,m)$ compact connected components of the level lines $H=c_i$ of the polynomial $H$, there exists a form $\omega =P\,dx+Q\,dy$ with polynomials $P$ and $Q$ of degrees no greater than $m$ such that the integral $\int _{H=c}\omega$ has nonmultiple zeros on the connected components $\{\gamma _i\}$. An upper bound for the number $M(H,m)$ in terms of the degree $n$ of the polynomial $H$ is found; this estimate is sharp for almost every polynomial $H$ of degree $n$. A multidimensional version of this result is proved. The relation between the weak infinitesimal Hilbert's 16th problem and the following question is discussed: How many limit cycles can a polynomial vector field of degree $n$ have if it is close to a Hamiltonian vector field?
Received in July 2005
English version:
Proceedings of the Steklov Institute of Mathematics, 2006, Volume 254, Pages 201–230
DOI: https://doi.org/10.1134/S0081543806030102
Bibliographic databases:
UDC: 517.927.7
Language: Russian
Citation: I. A. Khovanskaya (Pushkar'), “Weak Infinitesimal Hilbert's 16th Problem”, Nonlinear analytic differential equations, Collected papers, Trudy Mat. Inst. Steklova, 254, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 215–246; Proc. Steklov Inst. Math., 254 (2006), 201–230
Citation in format AMSBIB
\Bibitem{Kho06}
\by I.~A.~Khovanskaya (Pushkar')
\paper Weak Infinitesimal Hilbert's 16th~Problem
\inbook Nonlinear analytic differential equations
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 254
\pages 215--246
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm110}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2301007}
\elib{https://elibrary.ru/item.asp?id=13517725}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 254
\pages 201--230
\crossref{https://doi.org/10.1134/S0081543806030102}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749410349}
Linking options:
  • https://www.mathnet.ru/eng/tm110
  • https://www.mathnet.ru/eng/tm/v254/p215
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:797
    Full-text PDF :198
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024