Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 1997, Volume 216, Pages 320–326 (Mi tm1014)  

This article is cited in 10 scientific papers (total in 10 papers)

Mixing for finite systems of coupled tent maps

G. Keller
Abstract: It is shown that a finite system of coupled mixing tent maps has a unique absolutely continuous invariant measure and is exact with respect to this measure provided the coupling strength does not exceed a certain value εuni which is independent of the size of the system.
Received in December 1996
Bibliographic databases:
UDC: 517.938
Language: English
Citation: G. Keller, “Mixing for finite systems of coupled tent maps”, Dynamical systems and related topics, Collection of articles. To the 60th anniversary of academician Dmitrii Viktorovich Anosov, Trudy Mat. Inst. Steklova, 216, Nauka, Moscow, 1997, 320–326; Proc. Steklov Inst. Math., 216 (1997), 315–321
Citation in format AMSBIB
\Bibitem{Kel97}
\by G.~Keller
\paper Mixing for finite systems of coupled tent maps
\inbook Dynamical systems and related topics
\bookinfo Collection of articles. To the 60th anniversary of academician Dmitrii Viktorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 1997
\vol 216
\pages 320--326
\publ Nauka
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm1014}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1632178}
\zmath{https://zbmath.org/?q=an:0911.58025}
\transl
\jour Proc. Steklov Inst. Math.
\yr 1997
\vol 216
\pages 315--321
Linking options:
  • https://www.mathnet.ru/eng/tm1014
  • https://www.mathnet.ru/eng/tm/v216/p320
  • This publication is cited in the following 10 articles:
    1. Liverani C., “Multidimensional Expanding Maps with Singularities: a Pedestrian Approach”, Ergod. Theory Dyn. Syst., 33:Part 1 (2013), 168–182  crossref  mathscinet  zmath  isi  elib  scopus
    2. Bardet J.-B., Keller G., Zweimueller R., “Stochastically Stable Globally Coupled Maps with Bistable Thermodynamic Limit”, Communications in Mathematical Physics, 292:1 (2009), 237–270  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    3. Bardet J.-B., Keller G., “Phase transitions in a piecewise expanding coupled map lattice with linear nearest neighbour coupling”, Nonlinearity, 19:9 (2006), 2193–2210  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    4. Chawanya T., “Robust 2–band intermittency in high–dimensional globally coupled tent map systems”, Progress of Theoretical Physics Supplement, 2006, no. 161, 169–172  crossref  adsnasa  isi  scopus  scopus
    5. Keller G., Liverani C., “Uniqueness of the SRB measure for piecewise expanding weakly coupled map lattices in any dimension”, Communications in Mathematical Physics, 262:1 (2006), 33–50  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. Keller G., Liverani C., “A spectral gap for a one-dimensional lattice of coupled piecewise expanding interval maps”, Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, Lecture Notes in Physics, 671, 2005, 115–151  crossref  mathscinet  zmath  adsnasa  isi
    7. Keller G., Liverani C., “Coupled map lattices without cluster expansion”, Discrete and Continuous Dynamical Systems, 11:2–3 (2004), 325–335  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Keller G., Zweimuller R., “Unidirectionally coupled interval maps: between dynamics and statistical mechanics”, Nonlinearity, 15:1 (2002), 1–24  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    9. Liverani C., “Return to equilibrium in classical and quantum systems”, Long Time Behaviour of Classical and Quantum Systems, Series on Concrete and Applicable Mathematics, 1, 2001, 1–32  mathscinet  zmath  adsnasa  isi
    10. Keller G., “An ergodic theoretic approach to mean field coupled maps”, Fractal Geometry and Stochastics II, Progress in Probability, 46, 2000, 183–208  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :141
    References:2
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025