Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 1997, Volume 216, Pages 265–284 (Mi tm1011)  

This article is cited in 12 scientific papers (total in 12 papers)

Markov partitions and homoclinic points of algebraic Zd-actions

M. Einsiedler, K. Schmidt
Abstract: We prove that a general class of expansive Zd-actions by automorphisms of compact. Abelian groups with completely positive entropy has “symbolic covers” of equal topological entropy. These symbolic covers are constructed by using homoclinic points of these actions. For d=1 we adapt a result of Kenyon and Vershik in [7] to prove that these symbolic covers are, in fact, sofic shifts. For d2 we are able t o prove the analogous statement only for certain examples, where the existence of such covers yields finitary isomorphisms between topologically nonisomorphic Z2-actions.
Received in March 1997
Bibliographic databases:
UDC: 517.9
Language: English
Citation: M. Einsiedler, K. Schmidt, “Markov partitions and homoclinic points of algebraic Zd-actions”, Dynamical systems and related topics, Collection of articles. To the 60th anniversary of academician Dmitrii Viktorovich Anosov, Trudy Mat. Inst. Steklova, 216, Nauka, Moscow, 1997, 265–284; Proc. Steklov Inst. Math., 216 (1997), 259–279
Citation in format AMSBIB
\Bibitem{EinSch97}
\by M.~Einsiedler, K.~Schmidt
\paper Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions
\inbook Dynamical systems and related topics
\bookinfo Collection of articles. To the 60th anniversary of academician Dmitrii Viktorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 1997
\vol 216
\pages 265--284
\publ Nauka
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm1011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1632169}
\zmath{https://zbmath.org/?q=an:0954.37008}
\transl
\jour Proc. Steklov Inst. Math.
\yr 1997
\vol 216
\pages 259--279
Linking options:
  • https://www.mathnet.ru/eng/tm1011
  • https://www.mathnet.ru/eng/tm/v216/p265
  • This publication is cited in the following 12 articles:
    1. Hanfeng Li, Klaus Schmidt, “Intrinsic ergodicity, generators, and symbolic representations of algebraic group actions”, Funct. Anal. Appl., 58:1 (2024), 39–64  mathnet  crossref  crossref
    2. Lind D., Schmidt K., “New Examples of Bernoulli Algebraic Actions”, Ergod. Theory Dyn. Syst., 42:9 (2022), PII S0143385721000560, 2923–2934  crossref  isi
    3. Labbe S., “Rauzy Induction of Polygon Partitions and Toral Z(2)-Rotations”, J. Mod. Dyn., 17 (2021), 481–528  crossref  isi
    4. Shirai T., Verbitskiy E., “Solvable and algebraic systems on infinite ladder”, Indag. Math.-New Ser., 27:5, SI (2016), 1162–1183  crossref  mathscinet  zmath  isi  scopus  scopus
    5. Schmidt K., “Representations of toral automorphisms”, Topology Appl., 205:SI (2016), 88–116  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    6. D. Lind, K. Schmidt, “A survey of algebraic actions of the discrete Heisenberg group”, Russian Math. Surveys, 70:4 (2015), 657–714  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Goll M., Schmidt K., Verbitskiy E., “Algebraic Actions of the Discrete Heisenberg Group: Expansiveness and Homoclinic Points”, Indag. Math.-New Ser., 25:4, SI (2014), 713–744  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Schmidt K., Verbitskiy E., “New directions in algebraic dynamical systems”, Regular & Chaotic Dynamics, 16:1–2 (2011), 79–89  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    9. Lind D., “Multi-dimensional symbolic dynamics”, Symbolic Dynamics and its Applications, Proceedings of Symposia in Applied Mathematics, 60, 2004, 61–79  crossref  mathscinet  zmath  isi
    10. Schmidt K., “Multi-dimensional symbolic dynamical systems”, Codes, Systems, and Graphical Models, IMA Volumes in Mathematics and its Applications, 123, 2001, 67–82  crossref  mathscinet  zmath  isi
    11. Schmidt K., “Algebraic coding of expansive group automorphisms and two–sided beta–shifts”, Monatshefte fur Mathematik, 129:1 (2000), 37–61  crossref  mathscinet  zmath  isi  scopus  scopus
    12. A. M. Vershik, N. A. Sidorov, “Bijective coding of automorphisms of the torus and binary quadratic forms”, Russian Math. Surveys, 53:5 (1998), 1106–1107  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :115
    References:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025