Proceedings of the Institute for System Programming of the RAS
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of ISP RAS:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the Institute for System Programming of the RAS, 2021, Volume 33, Issue 6, Pages 205–216
DOI: https://doi.org/10.15514/ISPRAS-2021-33(6)-14
(Mi tisp655)
 

Active learning and transfer learning for document segmentation

D. M. Kiranovab, M. A. Ryndinb, I. S. Kozlovb

a Moscow Institute of Physics and Technology
b Ivannikov Institute for System Programming of the RAS
Abstract: In this paper, we investigate the effectiveness of classical approaches of active learning in the problem of segmentation of document images in order to reduce the training sample. A modified approach to the selection of images for marking and subsequent training is presented. The results obtained through active learning are compared to transfer learning using fully labeled data. It also investigates how the subject area of the training set, on which the model is initialized for transfer learning, affects the subsequent additional training of the model.
Keywords: active learning, transfer learning, image segmentation.
Document Type: Article
Language: Russian
Citation: D. M. Kiranov, M. A. Ryndin, I. S. Kozlov, “Active learning and transfer learning for document segmentation”, Proceedings of ISP RAS, 33:6 (2021), 205–216
Citation in format AMSBIB
\Bibitem{KirRynKoz21}
\by D.~M.~Kiranov, M.~A.~Ryndin, I.~S.~Kozlov
\paper Active learning and transfer learning for document segmentation
\jour Proceedings of ISP RAS
\yr 2021
\vol 33
\issue 6
\pages 205--216
\mathnet{http://mi.mathnet.ru/tisp655}
\crossref{https://doi.org/10.15514/ISPRAS-2021-33(6)-14}
Linking options:
  • https://www.mathnet.ru/eng/tisp655
  • https://www.mathnet.ru/eng/tisp/v33/i6/p205
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Proceedings of the Institute for System Programming of the RAS
    Statistics & downloads:
    Abstract page:24
    Full-text PDF :7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024