Proceedings of the Institute for System Programming of the RAS
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of ISP RAS:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the Institute for System Programming of the RAS, 2021, Volume 33, Issue 2, Pages 149–162
DOI: https://doi.org/10.15514/ISPRAS-2021-33(2)-9
(Mi tisp591)
 

This article is cited in 2 scientific papers (total in 2 papers)

Object detection in aerial navigation using wavelet transform and convolutional neural networks: a first approach

J. M. Fortuna-Cervantesa, M. T. Ramírez-Torresa, J. Martínez-Carranzab, J. S. Murguía-Ibarraa, M. Mejía-Carlosa

a Universidad Autónoma de San Luis Potosí
b Instituto Nacional de Astrofísica Óptica y Electrónica
Full-text PDF (602 kB) Citations (2)
References:
Abstract: This paper proposes a first approach based on wavelet analysis inside image processing for object detection with a repetitive pattern and binary classification in the image plane, in particular for navigation in simulated environments. To date, it has become common to use algorithms based on convolutional neural networks (CNNs) to process images obtained from the on-board camera of unmanned aerial vehicles (UAVs) in the spatial domain, being useful in detection and classification tasks. CNN architecture can receive images without pre-processing, as input in the training stage. This advantage allows us to extract the characteristic features of the image/ Nevertheless, in this work, we argue that characteristics at different frequencies, low and high, also affect the performance of CNN during training. Thus, we propose a CNN architecture complemented by the 2D discrete wavelet transform, which is a feature extraction method. The information improves the learning capacity, eliminates the overfitting, and achieves a better efficiency in the detection of a target.
Keywords: CNN, wavelet analysis, object detection, drone, object classification, gazebo simulation environment.
Funding agency Grant number
CONACYT - Consejo Nacional de Ciencia y Tecnología
J.M. Fortuna-Cervantes is a doctoral fellow of CONACYT (México) in the program of «Ciencias Aplicadas» at IICO-UASLP.
Document Type: Article
Language: Russian
Citation: J. M. Fortuna-Cervantes, M. T. Ramírez-Torres, J. Martínez-Carranza, J. S. Murguía-Ibarra, M. Mejía-Carlos, “Object detection in aerial navigation using wavelet transform and convolutional neural networks: a first approach”, Proceedings of ISP RAS, 33:2 (2021), 149–162
Citation in format AMSBIB
\Bibitem{ForRamMar21}
\by J.~M.~Fortuna-Cervantes, M.~T.~Ram{\'\i}rez-Torres, J.~Mart{\'\i}nez-Carranza, J.~S.~Murgu{\'\i}a-Ibarra, M.~Mej{\'\i}a-Carlos
\paper Object detection in aerial navigation using wavelet transform and convolutional neural networks: a first approach
\jour Proceedings of ISP RAS
\yr 2021
\vol 33
\issue 2
\pages 149--162
\mathnet{http://mi.mathnet.ru/tisp591}
\crossref{https://doi.org/10.15514/ISPRAS-2021-33(2)-9}
Linking options:
  • https://www.mathnet.ru/eng/tisp591
  • https://www.mathnet.ru/eng/tisp/v33/i2/p149
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Proceedings of the Institute for System Programming of the RAS
    Statistics & downloads:
    Abstract page:116
    Full-text PDF :86
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024