|
Searching for missing library function calls using machine learning
I. A. Yakimov, A. S. Kuznetsov Institute of space and informatics technologies, Siberian Federal University
Abstract:
Software development is a complex and error-prone process. In order to reduce the complexity of software development, third-party libraries are being created. Examples of source codes for popular libraries are available in the literature and online resources. In this paper, we present a hypothesis that most of these examples contain repetitive patterns. Moreover, these patterns can be used to construct models capable of predicting the presence (or absence) of missing calls of certain library functions using machine learning. To confirm this hypothesis, a system was implemented that implements the described functional. Experimental studies confirm the hypothesis. The accuracy of the results reaches 80% with a top-4 accuracy. It can be concluded that this system, with further development, can find industrial application.
Keywords:
OpenGL, software quality, recommender systems, machine learning, neural networks.
Citation:
I. A. Yakimov, A. S. Kuznetsov, “Searching for missing library function calls using machine learning”, Proceedings of ISP RAS, 29:6 (2017), 117–134
Linking options:
https://www.mathnet.ru/eng/tisp276 https://www.mathnet.ru/eng/tisp/v29/i6/p117
|
Statistics & downloads: |
Abstract page: | 159 | Full-text PDF : | 93 | References: | 49 |
|