Abstract:
We consider the Navier–Stokes equations for an incompressible fluid that at any specific instant $t\ge 0$ fills an open axially symmetric cylindric layer $D$. We find solutions of these equations in the class of motions described by velocity fields whose lines for $t\ge 0$ coincide with their vortex lines and lie on axially symmetric cylindric surfaces in $D$.
Citation:
V. P. Vereshchagin, Yu. N. Subbotin, N. I. Chernykh, “Some solutions of continuum equations for an incompressible viscous fluid”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 4, 2013, 48–63; Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 208–223
Yu. V. Sheretov, “Ob obschikh tochnykh resheniyakh sistemy Nave-Stoksa i kvazigidrodinamicheskoi sistemy dlya nestatsionarnykh techenii”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2017, no. 3, 13–25
V. P. Vereschagin, Yu. N. Subbotin, N. I. Chernykh, “Odin klass reshenii uravneniya Eilera v tore s solenoidalnym polem skorostei. III”, Tr. IMM UrO RAN, 22, no. 2, 2016, 91–100
V. P. Vereshchagin, Yu. N. Subbotin, N. I. Chernykh, “A solution class of the Euler equation in a torus with solenoidal velocity field. II”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 236–242