Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 3, Pages 268–273 (Mi timm985)  

On maximal abnormal subgroups of finite groups

M. V. Sel'kin, R. V. Borodich

Francisk Skorina Gomel State University
References:
Abstract: A subgroup $m$-functor $\Theta$ is a function that maps each group $G$ to some set $\Theta(G)$ consisting of maximal subgroups of $G$ and the group $G$ itself; it is assumed that $\Theta(G^\alpha)=(\Theta(G))^\alpha$ for any automorphism $\alpha$ of $G$. We establish the structure of the functor generalized Frattini subgroup and its influence on the properties of the group.
Keywords: finite group, $p$-nilpotent group, maximal subgroup, $m$-functor.
Received: 15.01.2013
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: M. V. Sel'kin, R. V. Borodich, “On maximal abnormal subgroups of finite groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 268–273
Citation in format AMSBIB
\Bibitem{SelBor13}
\by M.~V.~Sel'kin, R.~V.~Borodich
\paper On maximal abnormal subgroups of finite groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 268--273
\mathnet{http://mi.mathnet.ru/timm985}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3363320}
\elib{https://elibrary.ru/item.asp?id=20234994}
Linking options:
  • https://www.mathnet.ru/eng/timm985
  • https://www.mathnet.ru/eng/timm/v19/i3/p268
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:269
    Full-text PDF :87
    References:69
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024