Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 3, Pages 215–223 (Mi timm979)  

This article is cited in 1 scientific paper (total in 1 paper)

On the derived $\pi$-length of a finite $\pi$-solvable group with a given $\pi$-Hall subgroup

V. S. Monakhov, D. V. Gritsuk

Francisk Skorina Gomel State University
Full-text PDF (172 kB) Citations (1)
References:
Abstract: Let $G_\pi$ be a $\pi$-Hall subgroup of a finite $\pi$-solvable group $G$, and let $M$ be a maximal subgroup of $G_\pi$. We find estimates for the derived $\pi$-length $l^a_\pi(G)$ of $G$ depending on the structure of the subgroups $G_\pi$ or $M$. We consider the situation where all proper subgroups in these subgroups are abelian or nilpotent. In particular, we prove that $l_\pi^a(G)\le5$ if $M$ is a minimal nonnilpotent group.
Keywords: finite $\pi$-solvable group, Hall subgroup, derived length.
Received: 04.02.2013
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. S. Monakhov, D. V. Gritsuk, “On the derived $\pi$-length of a finite $\pi$-solvable group with a given $\pi$-Hall subgroup”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 215–223
Citation in format AMSBIB
\Bibitem{MonGri13}
\by V.~S.~Monakhov, D.~V.~Gritsuk
\paper On the derived $\pi$-length of a~finite $\pi$-solvable group with a~given $\pi$-Hall subgroup
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 215--223
\mathnet{http://mi.mathnet.ru/timm979}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3363314}
\elib{https://elibrary.ru/item.asp?id=20234988}
Linking options:
  • https://www.mathnet.ru/eng/timm979
  • https://www.mathnet.ru/eng/timm/v19/i3/p215
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:358
    Full-text PDF :98
    References:72
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024