|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 3, Pages 150–157
(Mi timm972)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On Ditsman's lemma
L. S. Kazarin P. G. Demidov Yaroslavl State University
Abstract:
Let $H$ be a subgroup of a group $G$ generated by a finite $G$-invariant subset $X=\bigcup_{i=1}^kC_i$ that consists of elements of finite order, where $C_i$ is the class of conjugate elements of $G$ with representative $a_i$. We prove that
$$
|H|\leq\prod_{i=1}^ko(a_i)^{|C_i|},
$$
where $o(a_i)$ is the order of the element $a_i\in C_i$. Best estimates are obtained for some important special cases.
Keywords:
simple group, Lie type group, sporadic simple group, quasisimple group.
Received: 22.01.2013
Citation:
L. S. Kazarin, “On Ditsman's lemma”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 150–157; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S91–S98
Linking options:
https://www.mathnet.ru/eng/timm972 https://www.mathnet.ru/eng/timm/v19/i3/p150
|
Statistics & downloads: |
Abstract page: | 407 | Full-text PDF : | 111 | References: | 72 | First page: | 1 |
|