Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 3, Pages 136–143 (Mi timm970)  

This article is cited in 11 scientific papers (total in 11 papers)

On periodic groups acting freely on abelian groups

A. Kh. Zhurtova, D. V. Lytkinab, V. D. Mazurov, A. I. Sozutovc

a Kabardino-Balkar State University
b Siberian State University of Telecommunications and Informatics
c Siberian Federal University
References:
Abstract: Let $\pi$ be some set of primes. A periodic group $G$ is called a $\pi$-group if all prime divisors of the order of each of its elements lie in $\pi$. An action of $G$ on a nontrivial group $V$ is called free if, for any $v\in V$ and $g\in G$ such that $vg=v$, either $v=1$ or $g=1$. We describe $\{2,3\}$-groups that can act freely on an abelian group.
Keywords: periodic group, abelian group, free action, local finiteness.
Received: 28.01.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, Volume 285, Issue 1, Pages S209–S215
DOI: https://doi.org/10.1134/S008154381405023X
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: A. Kh. Zhurtov, D. V. Lytkina, V. D. Mazurov, A. I. Sozutov, “On periodic groups acting freely on abelian groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 136–143; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S209–S215
Citation in format AMSBIB
\Bibitem{ZhuLytMaz13}
\by A.~Kh.~Zhurtov, D.~V.~Lytkina, V.~D.~Mazurov, A.~I.~Sozutov
\paper On periodic groups acting freely on abelian groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 136--143
\mathnet{http://mi.mathnet.ru/timm970}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3363305}
\elib{https://elibrary.ru/item.asp?id=20234979}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 285
\issue , suppl. 1
\pages S209--S215
\crossref{https://doi.org/10.1134/S008154381405023X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338337200022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903289591}
Linking options:
  • https://www.mathnet.ru/eng/timm970
  • https://www.mathnet.ru/eng/timm/v19/i3/p136
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024