Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 3, Pages 15–22 (Mi timm959)  

Small ranks of central unit groups of integral group rings of alternating groups

R. Zh. Aleevab

a Chelyabinsk State University
b South Ural State University
References:
Abstract: We prove that the ranks of central unit groups of integral group rings of alternating groups of degrees greater than 38 are at least 11. The presented tables contain ranks of all central unit groups of integral group rings of alternating groups of degrees at most 200. In particular, for every $r\in\{0,\dots,10\}$, we obtain the complete list of integers $n$ such that the central unit group of the integral group ring of the alternating group of degree $n$ has rank $r$.
Keywords: alternating group, group ring, central unit, rank of abelian group, partition.
Received: 14.02.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, Volume 285, Issue 1, Pages S12–S18
DOI: https://doi.org/10.1134/S0081543814050022
Bibliographic databases:
Document Type: Article
UDC: 512.552.7+512.542.74
Language: Russian
Citation: R. Zh. Aleev, “Small ranks of central unit groups of integral group rings of alternating groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 15–22; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S12–S18
Citation in format AMSBIB
\Bibitem{Ale13}
\by R.~Zh.~Aleev
\paper Small ranks of central unit groups of integral group rings of alternating groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 15--22
\mathnet{http://mi.mathnet.ru/timm959}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3362574}
\elib{https://elibrary.ru/item.asp?id=20234968}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 285
\issue , suppl. 1
\pages S12--S18
\crossref{https://doi.org/10.1134/S0081543814050022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338337200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903289275}
Linking options:
  • https://www.mathnet.ru/eng/timm959
  • https://www.mathnet.ru/eng/timm/v19/i3/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024