Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 2, Pages 285–294 (Mi timm954)  

This article is cited in 10 scientific papers (total in 10 papers)

Hybrid method for the approximate solution of the 3-satisfiability problem associated with the factorization problem

R. T. Faizullina, V. I. Dul'keitb, Yu. Yu. Ogorodnikovc

a Omsk State Technical University
b LuxSoft
c Omsk State University
References:
Abstract: We consider a hybrid method for the approximate solution of the 3-satisfiability problem associated with the factorization problem. The method consists of two stages: a segment genetic algorithm and the method of successive approximations. We propose a method for finding most probable bits of the solution. The method consists of several independent tests and makes it possible to approach the convergence domain of the hybrid method and determine several bits of the factors.
Keywords: satisfiability problem, factorization, segment genetic algorithm, minimization.
Received: 10.02.2013
Bibliographic databases:
Document Type: Article
UDC: 004.021
Language: Russian
Citation: R. T. Faizullin, V. I. Dul'keit, Yu. Yu. Ogorodnikov, “Hybrid method for the approximate solution of the 3-satisfiability problem associated with the factorization problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 2, 2013, 285–294
Citation in format AMSBIB
\Bibitem{FaiDulOgo13}
\by R.~T.~Faizullin, V.~I.~Dul'keit, Yu.~Yu.~Ogorodnikov
\paper Hybrid method for the approximate solution of the $3$-satisfiability problem associated with the factorization problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 2
\pages 285--294
\mathnet{http://mi.mathnet.ru/timm954}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364115}
\elib{https://elibrary.ru/item.asp?id=19053991}
Linking options:
  • https://www.mathnet.ru/eng/timm954
  • https://www.mathnet.ru/eng/timm/v19/i2/p285
  • This publication is cited in the following 10 articles:
    1. D. N. Barotov, “Vognutye prodolzheniya bulevopodobnykh funktsii i nekotorye ikh svoistva”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 51 (2025), 82–100  mathnet  crossref
    2. D. N. Barotov, “On the Existence and Properties of Convex Extensions of Boolean Functions”, Math. Notes, 115:4 (2024), 489–505  mathnet  crossref  crossref  mathscinet
    3. D. N. Barotov, R. N. Barotov, “Konstruirovanie gladkikh vypuklykh prodolzhenii bulevykh funktsii”, Vestnik rossiiskikh universitetov. Matematika, 29:145 (2024), 20–28  mathnet  crossref
    4. D. N. Barotov, “Convex continuation of a Boolean function and its applications”, J. Appl. Industr. Math., 18:1 (2024), 1–9  mathnet  crossref  crossref
    5. D. N. Barotov, V. A. Sudakov, “O neravenstvakh mezhdu vypuklymi, vognutymi i polilineinymi prodolzheniyami bulevykh funktsii”, Preprinty IPM im. M. V. Keldysha, 2024, 030, 13 pp.  mathnet  crossref
    6. D. N. Barotov, “Vognutye prodolzheniya bulevykh funktsii i nekotorye ikh svoistva i prilozheniya”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 49 (2024), 105–123  mathnet  crossref
    7. D. N. Barotov, “Convex continuations of some discrete functions”, J. Appl. Industr. Math., 18:3 (2024), 412–423  mathnet  crossref  crossref
    8. Fu H., Xu Ya., Chen Sh., Liu J., “Improving Walksat For Random 3-Sat Problems”, J. Univers. Comput. Sci., 26:2 (2020), 220–243  mathscinet  isi
    9. H. Fu, Ya. Xu, G. Wu, H. Jia, W. Zhang, R. Hu, “An improved adaptive genetic algorithm for solving 3-SAT problems based on effective restart and greedy strategy”, Int. J. Comput. Intell. Syst., 11:1 (2018), 402–413  crossref  mathscinet  isi
    10. Yu. Yu. Ogorodnikov, R. T. Faizullin, “Opredelenie nulevykh bit zadachi 3-vypolnimost, assotsiirovannoi s zadachei faktorizatsii”, Kompyuternaya optika, 38:3 (2014), 521–528  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:442
    Full-text PDF :118
    References:93
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025