Abstract:
The paper is devoted to the investigation of smoothness of solutions of functional differential equations depending on the properties of their right-hand sides.
Citation:
A. V. Kim, N. G. Kolmogortseva, “On the degree of smoothness of solutions of functional differential equations”, Trudy Inst. Mat. i Mekh. UrO RAN, 13, no. 2, 2007, 120–123; Proc. Steklov Inst. Math. (Suppl.), 259, suppl. 2 (2007), S159–S162
\Bibitem{KimKol07}
\by A.~V.~Kim, N.~G.~Kolmogortseva
\paper On the degree of smoothness of solutions of functional differential equations
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2007
\vol 13
\issue 2
\pages 120--123
\mathnet{http://mi.mathnet.ru/timm94}
\elib{https://elibrary.ru/item.asp?id=12040774}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2007
\vol 259
\issue , suppl. 2
\pages S159--S162
\crossref{https://doi.org/10.1134/S0081543807060107}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38949122449}
Linking options:
https://www.mathnet.ru/eng/timm94
https://www.mathnet.ru/eng/timm/v13/i2/p120
This publication is cited in the following 2 articles:
D. V. Khlopin, “Lomanye Eilera i diametr razbieniya”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:4 (2014), 102–112
Rus I.A., “Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey”, Carpathian J. Math., 26:2 (2010), 230–258