Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 2, Pages 34–47 (Mi timm930)  

This article is cited in 20 scientific papers (total in 20 papers)

Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere

V. V. Arestovab, M. V. Deikalovaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Institute of Mathematics and Computer Science, Ural Federal University
References:
Abstract: We study the sharp Nikol'skii inequality between the uniform norm and $L_q$ norm of algebraic polynomials of a given (total) degree $n\ge1$ on the unit sphere $\mathbb S^{m-1}$ of the Euclidean space $\mathbb R^m$ for $1\le q<\infty$. We prove that the polynomial $\varrho_n$ in one variable with unit leading coefficient, that deviates least from zero in the space $L_q^\psi(-1,1)$ of functions $f$ such that $|f|^q$ is summable on $(-1,1)$ with the Jacobi weight $\psi(t)=(1-t)^\alpha(1+t)^\beta$, $\alpha=(m-1)/2$, $\beta=(m-3)/2$, as a zonal polynomial in one variable $t=\xi_m$, $x=(\xi_1,\xi_2,\dots,\xi_m)\in\mathbb S^{m-1}$, is (in a certain sense, unique) extremal in the Nikol'skii inequality on the sphere $\mathbb S^{m-1}$. The corresponding one-dimensional inequalities for algebraic polynomials on a closed interval are discussed.
Keywords: multidimensional euclidean sphere, algebraic polynomials, Nikol'skii inequality, polynomials that deviate least from zero.
Received: 07.11.2012
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, Volume 284, Issue 1, Pages 9–23
DOI: https://doi.org/10.1134/S0081543814020023
Bibliographic databases:
Document Type: Article
UDC: 517.518.86
Language: Russian
Citation: V. V. Arestov, M. V. Deikalova, “Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 2, 2013, 34–47; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 9–23
Citation in format AMSBIB
\Bibitem{AreDei13}
\by V.~V.~Arestov, M.~V.~Deikalova
\paper Nikol'skii inequality for algebraic polynomials on a~multidimensional Euclidean sphere
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 2
\pages 34--47
\mathnet{http://mi.mathnet.ru/timm930}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3363371}
\elib{https://elibrary.ru/item.asp?id=19053966}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 284
\issue , suppl. 1
\pages 9--23
\crossref{https://doi.org/10.1134/S0081543814020023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334277400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898737843}
Linking options:
  • https://www.mathnet.ru/eng/timm930
  • https://www.mathnet.ru/eng/timm/v19/i2/p34
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024