Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 1, Pages 244–252 (Mi timm918)  

Newton–Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems

V. V. Struzhanovab, N. V. Burmashevab

a Institute of Engineering Science, Urals Branch, Russian Academy of Sciences
b Ural Federal University
References:
Abstract: An algorithm of Newton–Kantorovich method's application for finding solutions (including nonunique solutions) of nonlinear equilibrium equations in discrete mechanical systems with nonconvex potential function is suggested. The algorithm is applied for solving the problem of finding equilibrium parameters of the mechanical system that implements a triaxial stretching of an elementary cube made of a nonlinear material.
Keywords: gradient system, nonconvex potential function, equilibrium equation, nonunique solutions, Newton–Kantorovich method.
Received: 03.04.2012
Bibliographic databases:
Document Type: Article
UDC: 513.88+539.3
Language: Russian
Citation: V. V. Struzhanov, N. V. Burmasheva, “Newton–Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 1, 2013, 244–252
Citation in format AMSBIB
\Bibitem{StrBur13}
\by V.~V.~Struzhanov, N.~V.~Burmasheva
\paper Newton--Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 1
\pages 244--252
\mathnet{http://mi.mathnet.ru/timm918}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3409361}
\elib{https://elibrary.ru/item.asp?id=18839283}
Linking options:
  • https://www.mathnet.ru/eng/timm918
  • https://www.mathnet.ru/eng/timm/v19/i1/p244
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:1003
    Full-text PDF :283
    References:87
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024