Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 1, Pages 226–235 (Mi timm916)  

This article is cited in 8 scientific papers (total in 8 papers)

On an inverse boundary value problem for a second-order elliptic equation with integral condition of the first kind

Ya. T. Megraliev

Baku State University
Full-text PDF (157 kB) Citations (8)
References:
Abstract: An inverse boundary value problem for a second-order elliptic equation with integral condition of the first kind is investigated. A definition of classical solution is introduced for this problem. The Fourier method is used to reduce the problem to a system of integral equations. The method of contraction mappings is applied to prove the existence and uniqueness of a solution of the system of integral equations. Then, the existence and uniqueness of a classical solution of the initial problem is proved.
Keywords: inverse boundary value problem, elliptic equation, Fourier method, classical solution.
Received: 11.09.2012
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: Ya. T. Megraliev, “On an inverse boundary value problem for a second-order elliptic equation with integral condition of the first kind”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 1, 2013, 226–235
Citation in format AMSBIB
\Bibitem{Meh13}
\by Ya.~T.~Megraliev
\paper On an inverse boundary value problem for a~second-order elliptic equation with integral condition of the first kind
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 1
\pages 226--235
\mathnet{http://mi.mathnet.ru/timm916}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408377}
\elib{https://elibrary.ru/item.asp?id=18839281}
Linking options:
  • https://www.mathnet.ru/eng/timm916
  • https://www.mathnet.ru/eng/timm/v19/i1/p226
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:646
    Full-text PDF :182
    References:65
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024