|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2007, Volume 13, Number 2, Pages 86–89
(Mi timm91)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On intersections of solvable Hall subgroups in finite nonsolvable groups
V. I. Zenkov
Abstract:
The author continues the investigation of intersections of Hall subgroups in finite groups. Previously, the author proved that in the case when a Hall subgroup is Sylow there are three subgroups conjugate to it such that their intersection coincides with the maximal normal primary subgroup. A similar assertion holds for Hall subgroups in solvable groups. The aim of this paper is to construct examples of a (nonsolvable) group in which the intersection of any four subgroups conjugate to some Hall subgroup is nontrivial.
Received: 03.05.2007
Citation:
V. I. Zenkov, “On intersections of solvable Hall subgroups in finite nonsolvable groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 13, no. 2, 2007, 86–89; Proc. Steklov Inst. Math. (Suppl.), 259, suppl. 2 (2007), S250–S253
Linking options:
https://www.mathnet.ru/eng/timm91 https://www.mathnet.ru/eng/timm/v13/i2/p86
|
Statistics & downloads: |
Abstract page: | 291 | Full-text PDF : | 97 | References: | 75 |
|