Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 1, Pages 69–80 (Mi timm900)  

This article is cited in 7 scientific papers (total in 7 papers)

Some properties of solutions of second-order linear ordinary differential equations

G. A. Grigoryan

Institute of Mathematics, National Academy of Sciences of Armenia
Full-text PDF (194 kB) Citations (7)
References:
Abstract: The Riccati equation method is used to obtain lower and upper estimates for the distance between two consecutive zeros of a solution and the derivative of the solution to a second-order linear ordinary differential equation in terms of its coefficients. Oscillation conditions and a stability condition are proved, and a theorem on the asymptotic behavior of zeros of solutions to a second-order linear equation and on the asymptotic behavior of one of the solutions to this equation is established.
Keywords: Riccati equation, estimation of the distance between two consecutive zeroes, oscillation, nonoscillation, oscillation on a finite interval, asymptotic behavior, stability.
Received: 12.04.2012
Bibliographic databases:
Document Type: Article
UDC: 517.923
Language: Russian
Citation: G. A. Grigoryan, “Some properties of solutions of second-order linear ordinary differential equations”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 1, 2013, 69–80
Citation in format AMSBIB
\Bibitem{Gri13}
\by G.~A.~Grigoryan
\paper Some properties of solutions of second-order linear ordinary differential equations
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 1
\pages 69--80
\mathnet{http://mi.mathnet.ru/timm900}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408362}
\elib{https://elibrary.ru/item.asp?id=18839266}
Linking options:
  • https://www.mathnet.ru/eng/timm900
  • https://www.mathnet.ru/eng/timm/v19/i1/p69
  • This publication is cited in the following 7 articles:
    1. Grigorian G.A., “Oscillation and Non-Oscillation Criteria For Linear Nonhomogeneous Systems of Two First-Order Ordinary Differential Equations”, J. Math. Anal. Appl., 507:1 (2022), 125734  crossref  mathscinet  isi  scopus
    2. Hasil P., Vesely M., “New Conditionally Oscillatory Class of Equations With Coefficients Containing Slowly Varying and Periodic Functions”, J. Math. Anal. Appl., 494:1 (2021), 124585  crossref  mathscinet  isi  scopus
    3. G. A. Grigorian, “Properties of solutions of the scalar Riccati equation with complex coefficients and some their applications”, Diff. Equat. Appl., 10:3 (2018), 277–298  crossref  mathscinet  zmath  isi
    4. G. A. Grigoryan, “Global solvability tests for a scalar Riccati equation with complex coefficients”, Differ. Equ., 53:4 (2017), 450–456  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    5. G. A. Grigorian, “Oscillatory criteria for the systems of two first-order linear differential equations”, Rocky Mt. J. Math., 47:5 (2017), 1497–1524  crossref  mathscinet  zmath  isi  scopus
    6. G. A. Grigoryan, “Criteria of global solvability for Riccati scalar equations”, Russian Math. (Iz. VUZ), 59:3 (2015), 31–42  mathnet  crossref
    7. G. A. Grigoryan, “On the stability of systems of two first-order linear ordinary differential equations”, Differ. Equ., 51:3 (2015), 283–292  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:774
    Full-text PDF :220
    References:99
    First page:18
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025