|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 4, Pages 315–327
(Mi timm889)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On the exact values of mean $\nu$-widths of some classes of entire functions
M. Sh. Shabozova, G. A. Yusupovb a Institute of Mathematics, Academy of Sciences of Republic of Tajikistan
b Tajik National University
Abstract:
We find the exact values of various $\nu$-widths for some classes of functions $f\in L_2^{(r)}(\mathbb R)$ differentiable on the axis $\mathbb R=(-\infty;+\infty)$ and satisfying the condition
$$
\Bigg(\int_0^h\Omega_m^q(f^{(r)},t)\,dt\Bigg)^{1/q}\leq\Phi(h),
$$
where $r,m\in\mathbb N$, $1/r<q\leq2$, $0<h\le\pi$, $\Omega_m(f^{(r)},t)_2$ is the generalized modulus of continuity of $m$th order of the derivative $f^{(r)}\in L_2(\mathbb R)$, and $\Phi(t)$ is an arbitrary continuous function increasing on $t\ge0$ and such that $\Phi(0)=0$.
Keywords:
spaces of measurable function, entire functions of exponential type $\sigma$, modulus of continuity of $m$th order, exact constant.
Received: 23.11.2011
Citation:
M. Sh. Shabozov, G. A. Yusupov, “On the exact values of mean $\nu$-widths of some classes of entire functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 4, 2012, 315–327
Linking options:
https://www.mathnet.ru/eng/timm889 https://www.mathnet.ru/eng/timm/v18/i4/p315
|
Statistics & downloads: |
Abstract page: | 316 | Full-text PDF : | 101 | References: | 69 | First page: | 5 |
|