Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 4, Pages 120–134 (Mi timm872)  

This article is cited in 7 scientific papers (total in 7 papers)

On the mechanics of helical flows in an ideal incompressible viscous continuous medium

V. P. Vereshchagina, Yu. N. Subbotinbc, N. I. Chernykhcb

a Russian State Professional Pedagogical University, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
c Institute of Mathematics and Computer Science, Ural Federal University
Full-text PDF (214 kB) Citations (7)
References:
Abstract: We find a general solution to the problem on the motion in an incompressible continuous medium occupying at any time a whole domain $D\subset R^3$ under the conditions that $D$ is an axially symmetric cylinder and the motion is described by the Euler equation together with the continuity equation for an incompressible medium and belongs to the class of planar-helical flows (according to I. S. Gromeka's terminology), in which sreamlines coincide with vortex lines. This class is constructed by the method of transformation of the geometric structure of a vector field. The solution is characterized in Theorem 2 in the end of the paper.
Keywords: scalar fields, vector fields, tensor fields, curl, Euler equation, Gromeka's problem.
Received: 23.07.2012
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, Volume 284, Issue 1, Pages 159–174
DOI: https://doi.org/10.1134/S008154381402014X
Bibliographic databases:
Document Type: Article
UDC: 514.17+532.5
Language: Russian
Citation: V. P. Vereshchagin, Yu. N. Subbotin, N. I. Chernykh, “On the mechanics of helical flows in an ideal incompressible viscous continuous medium”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 4, 2012, 120–134; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 159–174
Citation in format AMSBIB
\Bibitem{VerSubChe12}
\by V.~P.~Vereshchagin, Yu.~N.~Subbotin, N.~I.~Chernykh
\paper On the mechanics of helical flows in an ideal incompressible viscous continuous medium
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 4
\pages 120--134
\mathnet{http://mi.mathnet.ru/timm872}
\elib{https://elibrary.ru/item.asp?id=18126474}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 284
\issue , suppl. 1
\pages 159--174
\crossref{https://doi.org/10.1134/S008154381402014X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334277400014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898765608}
Linking options:
  • https://www.mathnet.ru/eng/timm872
  • https://www.mathnet.ru/eng/timm/v18/i4/p120
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :126
    References:79
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024