Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 4, Pages 90–103 (Mi timm869)  

This article is cited in 1 scientific paper (total in 1 paper)

On antiproximinal sets in Grothendieck spaces

V. S. Balaganskii

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (231 kB) Citations (1)
References:
Abstract: Under some constraints on a Grothendieck space, we prove that this space contains a closed convex bounded antiproximinal set for some Lindenstrauss spaces. A fact that was proved earlier by the author for a classical space $C(Q)$ is now proved for some Lindenstrauss spaces.
Keywords: antiproximinal set, Grothendieck spaces.
Received: 04.04.2012
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. S. Balaganskii, “On antiproximinal sets in Grothendieck spaces”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 4, 2012, 90–103
Citation in format AMSBIB
\Bibitem{Bal12}
\by V.~S.~Balaganskii
\paper On antiproximinal sets in Grothendieck spaces
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 4
\pages 90--103
\mathnet{http://mi.mathnet.ru/timm869}
\elib{https://elibrary.ru/item.asp?id=18126471}
Linking options:
  • https://www.mathnet.ru/eng/timm869
  • https://www.mathnet.ru/eng/timm/v18/i4/p90
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:304
    Full-text PDF :99
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024