Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 4, Pages 3–13 (Mi timm862)  

This article is cited in 7 scientific papers (total in 7 papers)

Best approximation for the analytic continuation operator on the class of analytic functions in a ring

R. R. Akopyanab

a Ozersk Technology Institute
b Ural Federal University
Full-text PDF (184 kB) Citations (7)
References:
Abstract: For classes of functions analytic in a ring (a disk), we study several extremal problems related to the analytic continuation operator: the best approximation of an operator, an optimal reconstruction of an operator from boundary values of a function on the circle given with an error, and the best approximation of one class of functions by another class.
Keywords: approximation of operators, analytic functions.
Received: 04.07.2012
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: R. R. Akopyan, “Best approximation for the analytic continuation operator on the class of analytic functions in a ring”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 4, 2012, 3–13
Citation in format AMSBIB
\Bibitem{Ako12}
\by R.~R.~Akopyan
\paper Best approximation for the analytic continuation operator on the class of analytic functions in a~ring
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 4
\pages 3--13
\mathnet{http://mi.mathnet.ru/timm862}
\elib{https://elibrary.ru/item.asp?id=18126463}
Linking options:
  • https://www.mathnet.ru/eng/timm862
  • https://www.mathnet.ru/eng/timm/v18/i4/p3
  • This publication is cited in the following 7 articles:
    1. O. V. Akopyan, R. R. Akopyan, “Optimal Recovery on Classes of Functions Analytic in an Annulus”, Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S4–S19  mathnet  crossref  crossref  mathscinet  isi  elib
    2. V. V. Arestov, R. R. Akopyan, “Zadacha Stechkina o nailuchshem priblizhenii neogranichennogo operatora ogranichennymi i rodstvennye ei zadachi”, Tr. IMM UrO RAN, 26, no. 4, 2020, 7–31  mathnet  crossref  elib
    3. R. R. Akopyan, “Analog of the Hadamard Theorem and Related Extremal Problems on the Class of Analytic Functions”, Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S13–S26  mathnet  crossref  crossref  isi  elib
    4. R. R. Akopyan, “Approximation of Derivatives of Analytic Functions from One Hardy Class by Another Hardy Class”, Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S1–S8  mathnet  crossref  crossref  isi  elib
    5. Roman R. Akopyan, “Approximation of the differentiation operator on the class of functions analytic in an annulus”, Ural Math. J., 3:2 (2017), 6–13  mathnet  crossref  mathscinet
    6. R. R. Akopian, “Optimal Recovery of Analytic Functions from Boundary Conditions Specified with Error”, Math. Notes, 99:2 (2016), 177–182  mathnet  crossref  crossref  mathscinet  isi  elib
    7. R. R. Akopian, “Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 13–18  mathnet  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :98
    References:52
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025