Abstract:
We consider a series of geometric problems on the covering of finite subsets of finite-dimensional numerical spaces by minimal families of hyperplanes. We prove that the problems are hard and Max-SNP-hard.
Citation:
M. Yu. Khachai, M. I. Poberii, “The computational complexity and approximability of a series of geometric covering problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 247–260; Proc. Steklov Inst. Math. (Suppl.), 283, suppl. 1 (2013), 64–77
\Bibitem{KhaPob12}
\by M.~Yu.~Khachai, M.~I.~Poberii
\paper The computational complexity and approximability of a~series of geometric covering problems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 3
\pages 247--260
\mathnet{http://mi.mathnet.ru/timm859}
\elib{https://elibrary.ru/item.asp?id=17937031}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 283
\issue , suppl. 1
\pages 64--77
\crossref{https://doi.org/10.1134/S008154381309006X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000327079000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887604494}
Linking options:
https://www.mathnet.ru/eng/timm859
https://www.mathnet.ru/eng/timm/v18/i3/p247
This publication is cited in the following 3 articles:
Khorkov V A., Galiev I Sh., “Optimization of a K-Covering of a Bounded Set With Circles of Two Given Radii”, Open Comput. Sci., 11:1 (2021), 232–240
Sh. I. Galiev, A. V. Khorkov, “On the number and arrangement of sensors for the multiple covering of bounded plane domains”, J. Appl. Industr. Math., 13:1 (2019), 43–53
Sh. I. Galiev, A. V. Khorkov, “Mnogokratnye pokrytiya krugami ravnostoronnego treugolnika, kvadrata i kruga”, Diskretn. analiz i issled. oper., 22:6 (2015), 5–28