Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 3, Pages 208–217 (Mi timm855)  

Representation of lattices by congruence lattices of semigroups without idempotents

A. L. Popovich

Ural Federal University
References:
Abstract: It is proved that every distributive algebraic lattice such that its compact elements form a lattice with unit can be represented as the congruence lattice of some semigroup without idempotents. This implies that every distributive algebraic lattice with at most countably many compact elements is also representable as the congruence lattice of a semigroup without idempotents.
Keywords: congruence lattice, semigroup, representation of lattices.
Received: 16.11.2011
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: A. L. Popovich, “Representation of lattices by congruence lattices of semigroups without idempotents”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 208–217
Citation in format AMSBIB
\Bibitem{Pop12}
\by A.~L.~Popovich
\paper Representation of lattices by congruence lattices of semigroups without idempotents
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 3
\pages 208--217
\mathnet{http://mi.mathnet.ru/timm855}
\elib{https://elibrary.ru/item.asp?id=17937027}
Linking options:
  • https://www.mathnet.ru/eng/timm855
  • https://www.mathnet.ru/eng/timm/v18/i3/p208
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :108
    References:40
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024