Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 3, Pages 195–200 (Mi timm853)  

This article is cited in 6 scientific papers (total in 6 papers)

Lie rings defined by the root system and family of additive subgroups of the main ring

Ya. N. Nuzhin

Siberian Federal University
Full-text PDF (141 kB) Citations (6)
References:
Abstract: For a given carpet of additive subgroups, a carpet subring of the Chevalley algebra is defined. For this subring, an analog of the known question on the absence of new root elements in a carpet subgroup is answered and necessary and sufficient conditions of its invariance with respect to the corresponding carpet subgroup are found.
Keywords: Chevalley group and algebra, carpet of additive subgroups, Lie ring.
Received: 27.12.2011
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, Volume 283, Issue 1, Pages 119–125
DOI: https://doi.org/10.1134/S0081543813090125
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: Ya. N. Nuzhin, “Lie rings defined by the root system and family of additive subgroups of the main ring”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 195–200; Proc. Steklov Inst. Math. (Suppl.), 283, suppl. 1 (2013), 119–125
Citation in format AMSBIB
\Bibitem{Nuz12}
\by Ya.~N.~Nuzhin
\paper Lie rings defined by the root system and family of additive subgroups of the main ring
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 3
\pages 195--200
\mathnet{http://mi.mathnet.ru/timm853}
\elib{https://elibrary.ru/item.asp?id=17937025}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 283
\issue , suppl. 1
\pages 119--125
\crossref{https://doi.org/10.1134/S0081543813090125}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000327079000012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887588748}
Linking options:
  • https://www.mathnet.ru/eng/timm853
  • https://www.mathnet.ru/eng/timm/v18/i3/p195
  • This publication is cited in the following 6 articles:
    1. Yakov N. Nuzhin, “On the closedness of carpets of additive subgroups associated with a Chevalley group over a commutative ring”, Zhurn. SFU. Ser. Matem. i fiz., 16:6 (2023), 732–737  mathnet
    2. P. S. Badin, Ya. N. Nuzhin, E. N. Troyanskaya, “O slabo dopolnyaemykh kovrakh lieva tipa nad kommutativnymi koltsami”, Vladikavk. matem. zhurn., 23:4 (2021), 28–34  mathnet  crossref
    3. Gutnova A.K. Koibaev V.A., “on Sufficient Conditions For the Closure of An Elementary Net”, Vestn. St Petersb. Univ.-Math., 53:2 (2020), 145–148  crossref  mathscinet  zmath  isi  scopus
    4. Bashkirov E.L., “On a Class of Lie Rings of 2 X 2 Matrices Over Associative Commutative Rings”, Linear Multilinear Algebra, 67:3 (2019), 456–478  crossref  isi
    5. V. A. Koibaev, Ya. N. Nuzhin, “Subgroups of the Chevalley groups and Lie rings definable by a collection of additive subgroups of the initial ring”, J. Math. Sci., 201:4 (2014), 458–464  mathnet  crossref  mathscinet
    6. Koibaev V.A., Nuzhin Ya.N., “Podgruppy grupp shevalle i koltsa li, opredelyaemye naborom additivnykh podgrupp osnovnogo koltsa”, Matematicheskii forum (itogi nauki. yug Rossii), 6 (2012), 44–55 Subgroups of the Сhevalley groups and lie rings determined by a set of additive subgroups of the initial ring  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:440
    Full-text PDF :156
    References:83
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025