Processing math: 100%
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 3, Pages 139–143 (Mi timm847)  

This article is cited in 5 scientific papers (total in 5 papers)

The complete reducibility of some GF(2)A7-modules

A. S. Kondrat'evab, I. V. Khramtsova

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University
Full-text PDF (145 kB) Citations (5)
References:
Abstract: It is proved that, if G is a finite group with a nontrivial normal 2-subgroup Q such that G/QA7 and an element of order 5 from G acts without fixed points on Q, then the extension of G by Q is splittable, Q is an elementary abelian group, and Q is the direct product of minimal normal subgroups of G each of which is isomorphic, as a G/Q-module, to one of the two 4-dimensional irreducible GF(2)A7-modules that are conjugate with respect to an outer automorphism of the group A7.
Keywords: finite group, GF(2)A7-module, completely reducible representation, prime graph.
Received: 11.03.2012
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, Volume 283, Issue 1, Pages 86–90
DOI: https://doi.org/10.1134/S0081543813090083
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: A. S. Kondrat'ev, I. V. Khramtsov, “The complete reducibility of some GF(2)A7-modules”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 139–143; Proc. Steklov Inst. Math. (Suppl.), 283, suppl. 1 (2013), 86–90
Citation in format AMSBIB
\Bibitem{KonKhr12}
\by A.~S.~Kondrat'ev, I.~V.~Khramtsov
\paper The complete reducibility of some $GF(2)A_7$-modules
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 3
\pages 139--143
\mathnet{http://mi.mathnet.ru/timm847}
\elib{https://elibrary.ru/item.asp?id=17937019}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 283
\issue , suppl. 1
\pages 86--90
\crossref{https://doi.org/10.1134/S0081543813090083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000327079000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887568583}
Linking options:
  • https://www.mathnet.ru/eng/timm847
  • https://www.mathnet.ru/eng/timm/v18/i3/p139
  • This publication is cited in the following 5 articles:
    1. A. S. Kondrat'ev, “Finite groups with given properties of their prime graphs”, Algebra and Logic, 55:1 (2016), 77–82  mathnet  crossref  crossref  isi  elib
    2. A. S. Kondratev, “O konechnykh gruppakh s nebolshim prostym spektrom, II”, Vladikavk. matem. zhurn., 17:2 (2015), 22–31  mathnet
    3. N. V. Maslova, “On the coincidence of Grünberg–Kegel graphs of a finite simple group and its proper subgroup”, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 129–141  mathnet  crossref  mathscinet  isi  elib
    4. Anatoly S. Kondrat'ev, “Finite almost simple $5$-primary groups and their Gruenberg–Kegel graphs”, Sib. elektron. matem. izv., 11 (2014), 634–674  mathnet
    5. Kondratev A.S., “O konechnykh gruppakh s nebolshim prostym spektrom”, Matematicheskii forum (itogi nauki. yug Rossii), 6 (2012), 56–74  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:438
    Full-text PDF :124
    References:70
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025