Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 3, Pages 26–29 (Mi timm835)  

This article is cited in 1 scientific paper (total in 1 paper)

A note on the extendability of an isomorphism of subgraphs of a graph to an automorphism of the graph

V. I. Trofimovab

a Institute of Mathematics and Mechanics, UB Russian Academy of Sciences
b Institute of Mathematics and Computer Sciences, Ural Federal University
Full-text PDF (103 kB) Citations (1)
References:
Abstract: Let $\Gamma$ be an undirected connected locally finite graph such that its automorphism group is vertex-transitive and has finite vertex stabilizers. For a vertex $v$ of $\Gamma$ and a non-negative integer $n$, let $\langle B_\Gamma(v,n)\rangle_\Gamma$ denote the subgraph of $\Gamma$ generated by the ball $B_\Gamma(v,n)$ of radius $n$ with center $v$. We prove that there exists a non-negative integer $c$ (depending only on $\Gamma$) such that, for any vertices $x$ and $y$ of $\Gamma$ and any non-negative integer $r$, if an isomorphism of $\langle B_\Gamma(x,r)\rangle_\Gamma$ onto $\langle B_\Gamma(y,r)\rangle_\Gamma$ can be extended to an isomorphism of $\langle B_\Gamma(x,r+c)\rangle_\Gamma$ onto $\langle B_\Gamma(y,r+c)\rangle_\Gamma$, then it can also be extended to an automorphism of $\Gamma$. Furthermore, we give a “formula” for $c$. In such a form the result can also be of interest for finite graphs $\Gamma$.
Keywords: vertex-symmetric graph, extension of automorphism.
Received: 20.01.2012
Bibliographic databases:
Document Type: Article
UDC: 512.54+519.17
Language: English
Citation: V. I. Trofimov, “A note on the extendability of an isomorphism of subgraphs of a graph to an automorphism of the graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 26–29
Citation in format AMSBIB
\Bibitem{Tro12}
\by V.~I.~Trofimov
\paper A note on the extendability of an isomorphism of subgraphs of a~graph to an automorphism of the graph
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 3
\pages 26--29
\mathnet{http://mi.mathnet.ru/timm835}
\elib{https://elibrary.ru/item.asp?id=17937006}
Linking options:
  • https://www.mathnet.ru/eng/timm835
  • https://www.mathnet.ru/eng/timm/v18/i3/p26
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024